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ABSTRACT

Malaria and type 2 diabetes represent two grow- ing global health
challenges that are increasingly intersecting in tropical and subtropical
regions. Climate change further complicates this scenario by expanding
mosquito habitats and worsening metabolic complications in diabetic
individuals. Re- search shows that diabetic patients face 46 percent higher
malaria infection risk and significantly elevated mortality rates compared
to non-diabetic individuals. This review examines the evolution of
mathematical models for malaria transmission over the past century,
from the foundational Ross model (1911) to contemporary frameworks
incorporating climate forcing and host heterogeneity. We trace how
successive generations of models have added biological realism through
compartmental structures, age-dependent immunity, vector population
dynamics, and environmental factors. Despite substantial progress,
current models largely assume uniform host susceptibility and recovery
rates, overlooking the profound impact of metabolic disorders on
infection dynamics. We identify critical research gaps and emphasise the
urgent need for integrated modelling approaches that explicitly account
for differential transmission probabilities and recovery rates in diabetic
versus non-diabetic populations under climate change scenarios. Such
models are essential for protecting vulnerable communities facing the
converging threats of infectious and chronic diseases in a warming world.
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Introduction

Malaria remains a persistent global health challenge, with the World Health Organization reporting approximately 260
million cases and nearly 597,000 deaths annually, predomi- nantly in tropical and subtropical regions [1]. Concurrently, the
prevalence of type 2 diabetes mellitus has escalated dra- matically, with projections indicating India’s diabetic popula- tion
alone could reach 157 million by 2050 [2]. The con- vergence of these two disease burdens, amplified by climate change,
presents an unprecedented challenge to global health systems [3]. Since 1950, global temperatures have increased by
approximately 0.6°C, fundamentally altering disease trans- mission patterns by expanding mosquito habitats and extend-
ing transmission seasons.*

Rising temperatures influence multiple components of the malaria transmission cycle: accel- erating larval development,
reducing the extrinsic incubation period of parasites, increasing vector biting rates, and simulta- neously exacerbating
metabolic complications in diabetic indi- viduals [5], [6], [18]. Heat stress in diabetic patients impairs glucose metabolism,
increases cardiovascular strain, and dis- rupts medication efficacy, while also increasing susceptibility to infectious diseases
[18], [7]. Emerging clinical evidence demonstrates bidirectional relationships between diabetes and malaria. Diabetic
individuals exhibit 46 percent higher odds of malaria infection compared to non-diabetics [8], with mortality rates reaching
35.18 percent versus 13.69 percent in non- diabetic patients.®

This elevated risk stems from compro- mised immune function due to chronic hyperglycemia, im- paired cellular responses
to parasitic infection, and prolonged recovery periods'®!!. As climate change expands malaria- endemic zones into regions
with high diabetes prevalence, understanding the complex interactions among vector biology, parasite transmission, host
immunity, and metabolic disorders becomes critical. Mathematical models have proven essential for understanding
infectious disease transmission dynamics for over a century. Sir Ronald Ross pioneered malaria modeling in 1911,
demonstrating that reducing mosquito numbers below a critical threshold could interrupt transmission. His work
established the foundation for quantitative epidemiology and introduced the basic reproductive number (R0) as a transmis-
sion threshold indicator. Over the past century, malaria models have evolved from simple two-compartment frameworks
to sophisticated multi-scale systems incorporating vector pop- ulation dynamics, host immunity, age structure, spatial het-
erogeneity, drug resistance, and environmental forcing.*?

Despite substantial progress in modelling malaria transmission and diabetes epidemiology independently, critical gaps
remain. Most malaria models assume homogeneous host populations with uniform susceptibility and recovery rates,
despite clin- ical evidence that metabolic disorders substantially modify infection risk and disease progression?®'°. Diabetes
progression models focus on metabolic complications without incorporating increased vulnerability to infectious diseases
[14], [22]. Climate-disease models incorporate temperature effects on vector biology but rarely extend to temperature
impacts on host susceptibility mediated through metabolic dysfunc- tion.'>%1® No published models explicitly integrate
differential transmission probabilities and recovery rates for diabetic versus non-diabetic individuals within malaria trans-
mission frameworks under climate forcing scenarios. >2°

This review synthesises the evolution of mathematical models for malaria transmission, with emphasis on climate change
impacts and implications for diabetic populations. We trace the development from Ross’s foundational work through
contemporary multi-factorial models, examining how successive generations of researchers incorporated biologi- cal realism
through compartmental structures, environmental forcing, host heterogeneity, and population immunity. Sec- tion Il
presents the basic models establishing fundamental transmission principles.

Section 1ll chronicles the historical evolution of modelling approaches from the 1910s through the 1990s. Section IV
examines complex contemporary models incorporating immunity, age structure, climate factors, and drug resistance.
Section V discusses data-based statistical modeling approaches. Section VI identifies research gaps and future directions for
integrated modelling of malaria-diabetes interactions under climate change. Throughout, we emphasize how model
complexity has evolved to address emerging public health challenges at the intersection of vector-borne diseases, non-
communicable diseases, and environmental change.

ISSN :2394-6539




Shivank et al.
271 J. Adv. Res. Med. Sci. Tech. 2025; 12(3&4)

Basic Models: Foundation of Malaria Transmission Theory

The foundational mathematical models of malaria estab- lished the core principles of vector-borne disease transmission,
introducing concepts that remain central to epidemiological modelling. Three seminal models—Ross

(1911), Macdonald (1957), and Anderson-May (1991)—form the trunk from which all subsequent malaria models have
branched as seen from Figure 1.

e The Ross Model (1911)

Sir Ronald Ross developed the first deterministic differential equation model for malaria, dividing human and mosquito
populations into susceptible and infected compartments [15]. The model follows an Sl structure for mosquitoes (no recov-
ery due to short lifespan) and an SIS structure for humans

Fig. 1. Evolution of malaria mathematical models from 1957 to present.

Ross-Macdonald SIR/SIS Models Age-Structured Climate-Integrated Comorbidity Models
1957 - 19705-1980s - 19905 - 20005-2010s - 2020s
Basic Ro theory Compartmental dynamics Immunity development Environmental forcing Host heterogeneity

The progression shows increasing biological complexity: Ross-Macdonald models established basic transmission thresholds
and RO theory, SIR/SIS frameworks introduced compartmental dynamics and equilibrium analysis, age-structured models
incorporated immunity development through repeated exposure, climate-integrated approaches added environmental
forcing and temperature-dependent parameters, and recent comorbidity models account for host heterogeneity including
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differential susceptibility in diabetic populations.

Fig. 2. Comparison of basic compartmental model structures. SIS model al- lows reinfection after recovery (malaria
without lasting immunity), SIR model includes permanent recovery, and SEIR model incorporates an exposed (latent)
period before infectiousness. Parameters: 3 (infection rate), y (recovery rate), o (incubation rate).

(recovered individuals return to susceptible state) as shown in Figure 2.

dly

= abm/ (l—fh)—r)'h (1)
dr m
d;’: = acl{ (1 —in ) — pz2/m (2)

where h and Im represent infected fractions of humans and mosquitoes respectively; a is the biting rate; b is the probability
of transmission to humans per infectious bite; c is the probability of mosquito infection per bite on infected human; m is
the mosquito-to-human ratio; r is the human recovery rate; and u2 is the mosquito mortality rate. The basic reproductive
number for the Ross model is:
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Ross demonstrated that malaria could be eliminated not by eradicating all mosquitoes, but by reducing their density below
a critical threshold where RO < 1. The square dependence on biting rate (a2) implied that interventions reducing mosquito-
human contact (such as bed nets) would be highly effective. This insight formed the mathematical foundation for vector
control strategies. 2

e The Macdonald Model (1957)

George Macdonald extended Ross’s framework by incor- porating the latent period (tm) during which the malaria parasite
develops within the mosquito, introducing an exposed compartment (Em) for vectors.? This created an SEI structure for
mosquitoes while maintaining the Sl structure for humans.
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The term e-p2tm represents the probability of mosquito survival through the latent period. The modified basic repro-
ductive number becomes:

maZbc
Ro — —— & H=Tm 7y
f T

e The Anderson-May Model (1991)

Anderson and May extended the Macdonald model by incorporating human latency (t4), recognizing that infected
humans pass through an exposed period before becoming infectious.1® This created parallel SEIS structures for
both humans and mosquitoes.

d‘jf = abmin(1=En—in)—abmin(t=tn)e ~CHHITn —(Crqi1)E,
(8)
din
= abmin(t — tn)e U #IT — (r + padis (@)
dt
dbm
ar acl (1-E, —in)—ach (t—t, )e ™™™ — usEn,
(10)
al _
T’: = ac.-‘”(t—rm )le H2Tm — iolm (11)

where u1 is the human mortality rate. The basic reproductive number now incorporates human latency:
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By accounting for both human and vector latency periods, the Anderson-May model provided more realistic
predictions of epidemic progression. The model showed that inclusion of human latency (approximately 10-21
days for Plasmod- ium falciparum) further reduced Ro and slowed the rate of epidemic spread. This framework
became the foundation for age-structured and immunity-based models developed subse- quently.

e Comparative Analysis and Climate Implications

Table | summarizes the evolution and key parameters of these foundational models. Each successive model reduced
predicted disease prevalence by incorporating additional bi- ological realism through latency periods.

Table I: COMPARISON OF BAsIC MALARIA TRANSMISSION IMIODELS

Human Key
Model Structure Vector Addition
Structure
Transmission
Ross (1911 S| S|
( ) threshold concept
Macdonald S| SEI Vector
(1957) latency (Tm),
exponential survival
Anderson-May SEIS SEI Human
(1991) latency (7h), mortality

These basic models have direct implications for under- standing climate change impacts on malaria transmission.
Temperature affects multiple parameters in the Ro expressions:
e Biting rate (a): Increases with temperature within the range 16-32°C [11]
e Mosquito mortality (u2): U-shaped relationship with temperature, with optimal survival at 25-28°C [9]
e Latency periods (tm, T1): Decrease dramatically with warming—parasite development in mosquitoes reduces
from 55 days at 16°C to 7 days at 28°C [16]

The exponential terms e #2TM and e #1Th create strong nonlinear temperature dependencies. Small increases in tem-
perature can simultaneously reduce latency periods and im- prove mosquito survival, leading to rapid increases in Ro within
the thermal optima window. However, these basic models do not account for host heterogeneity—particularly differential
susceptibility and recovery rates in populations with metabolic disorders such as type 2 diabetes, which may exhibit altered
responses to both infection and temperature stress.

HisTORICAL EVOLUTION OF MALARIA MODELS (1960S5-19908S)

The decades following Macdonald’s work witnessed sys- tematic efforts to incorporate biological complexities observed in
field studies, particularly from large-scale epidemiological projects in Africa. These models progressively addressed lim-
itations of the basic frameworks by introducing age structure, acquired immunity, spatial heterogeneity, and
environmental forcing.

Age Structure and Acquired Immunity

Field observations in Africa revealed distinct age-dependent patterns in malaria prevalence that basic models could not
explain [2]. Infection rates rose sharply in early childhood, peaked around age 5-10 years, then declined progressively in
adolescents and adults. The basic Ross-Macdonald frame- works treated all humans as epidemiologically identical re-
gardless of age, assuming uniform susceptibility and recovery rates—an assumption contradicted by field data showing dra-
matically different infection prevalence across age groups.

Anderson and May addressed this by reformulating infec- tion prevalence as a function of both chronological age and
calendar time, allowing infection dynamics to vary across age cohorts.’
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However, when validated against parasitological surveys from the Garki project in northern Nigeria, these age-structured
models overpredicted infection prevalence in adults and failed to capture the characteristic rapid decline in parasitemia
after the childhood peak. The discrepancy revealed that age alone was insufficient—the critical missing element Dietz,
Molineaux and Thomas (1974) developed the first immunity-incorporating model by dividing the human popula- tion into
seven compartments based on infection and immune status. Their model introduced the concept that immunity is not
permanent but wanes in the absence of new infections, and can be boosted by re-infection. The average per capita rate of
immunity loss y(h, T) was formulated as:

ho—hr

Mo = e 4
where h is the force of infection and t is the duration of immunity in the absence of new infections. This for- mulation
captured the observation that in high-transmission areas, immunity loss occurs very slowly because continu- ous re-
exposure maintains immune memory, while in low- transmission settings, immunity wanes rapidly [7].

Building on this foundation, Aron and May (1982) pro- posed a simplified age-immunity model using three com-
partments—Susceptible (Sp), Infected (/4), and Immune (Rn)—following a SIRS structure [2]:

dsy

- = "hS +ri +ulh R (14)
Aey h h h
%=h5 —rl —gl (15)
h h “h
da
dR,,
- = —ylh R 16
g = @k —ulh TR (16)

was acquired immunity. The Garki project (1969-1976) provided detailed longitudi- nal data showing that individuals in
endemic areas gradually acquired immunity through repeated exposure, leading to reduced disease severity and faster
parasite clearance despite continued infection.!®

where a represents age, r is the recovery rate, and g is the rate of acquiring immunity. This model successfully
reproduced the characteristic age-prevalence curve observed in tropical Africa, with peak prevalence of approximately 70
percent in children aged 5-7 years, declining to 10-15 percent in adults at high transmission intensities.?

Vector Dynamics and Environmental Forcing

Earlier models treated mosquito population size as fixed despite clear seasonal fluctuations driven by rainfall and tem-
perature. Researchers in the 1980s-1990s began incorporating explicit mosquito population dynamics with density-
dependent larval mortality, allowing mosquito density to respond to environmental carrying capacity and providing a
mechanistic link between habitat availability and adult mosquito abundance.?

By the mid-1990s, concerns about climate change motivated efforts to incorporate temperature-dependent parameters into
transmission models. Martens et al. (1995) developed one of the first global malaria models driven by climate projections,
parameterizing sporogonic cycle duration, mosquito survival probability, and biting rate as explicit functions of temper-
ature [19]. Laboratory data showed that sporogonic duration decreased from 56 days at 16°C to 9 days at 28°C, while daily
survival probability peaked around 25°C. The model projected that 2-3°C warming could expand malaria risk zones to higher
latitudes and altitudes, potentially exposing an additional 260- 320 million people by 2050 [19], though these projections
did not account for socioeconomic development or adaptive interventions.?°

By the late 1990s, malaria modeling had evolved from Ross’s simple two-equation system to sophisticated frame- works
incorporating age structure, acquired immunity, spatial structure, vector ecology, and environmental forcing. How- ever,
these models shared a common assumption of host homogeneity beyond age differences. They did not distin- guish
individuals with underlying health conditions that could alter susceptibility to infection, disease severity, or recovery rates—
a critical gap as type 2 diabetes prevalence increased in tropical regions where malaria remained endemic.
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Contemporary Models (2010S-2025)

The past decade has witnessed fundamental shifts in malaria modeling, driven by climate change urgency, computational
advances, and growing recognition of host heterogeneity. Con- temporary frameworks integrate real-time environmental
data, nonlinear thermal responses, and multi-pathogen interactions that earlier models could not capture.

Climate-Integrated Transmission Models

Recent models explicitly couple temperature and humidity effects with vector and parasite biology through empirically-
derived nonlinear relationships. Parham and Michael (2010) developed process-based climate-driven transmission models
demonstrating that rainfall and temperature simultaneously affect mosquito population dynamics, malaria invasion, and
local seasonal extinction?®. Their analysis identified a critical temperature window around 32-33°C where endemic
transmission and disease spread rates are optimized, providing mechanistic insights into how temperature shifts affect geo-
graphic distribution of at-risk regions.

Mordecai et al. (2013) revolutionized temperature- transmission modeling by incorporating empirically-derived nonlinear
thermal responses of mosquito and parasite traits [14]. Their model predicted optimal malaria transmission at 25°C—
dramatically lower than the 31°C predicted by earlier linear models—with transmission decreasing sharply above 28°C.
Validation against African entomological inoculation rate data spanning 40 years confirmed both the 25°C optimum and
the high-temperature decline, fundamentally altering projections about climate change impacts on malaria distribution.
Liu-Helmersson et al. (2014) extended this framework to Aedes aegypti, demonstrating nonlinear relationships be- tween
temperature and vectorial capacity with implications for dengue and other arboviral diseases [11]. Ghosh et al. (2024)
applied similar approaches to Anopheles stephensi, showing that temperature and nutritional stress interact synergistically
to alter vector competence, with laboratory validation that warming beyond 32°C dramatically reduces mosquito survival
and biting rates.’

Arquam et al. (2020) integrated environmental tempera- ture directly into SIR frameworks for vector-borne diseases,
demonstrating that seasonal forcing creates complex dynamics including multi-year cycles and threshold behaviors [3]. Nur
et al. (2018) applied Lyapunov stability analysis to climate- driven dengue transmission, establishing mathematical condi- tions
under which climate variability destabilizes disease-free equilibria [16]. Ryan et al. (2020) projected shifting trans- mission risk
across Africa under multiple climate scenarios, identifying regions where warming may paradoxically reduce transmission
suitability while expanding seasonal transmission windows at higher elevations.?*

Comorbidity and Host Heterogeneity Models

The intersection of climate change and non-communicable diseases has emerged as a critical modeling frontier.
Ratter- Rieck et al. (2023) synthesized evidence showing that diabetic individuals face compounded risks under
climate change: impaired thermoregulation during heat stress, reduced medica- tion efficacy at elevated
temperatures, and increased infection susceptibility.?? Zheng et al. (2024) quantified these effects through
spatiotemporal analysis in Shandong, China, revealing that temperature and humidity jointly predict type 2 diabetes
mortality with location-specific thresholds.?

Epidemiological studies have established that diabetes sub- stantially modifies malaria risk and outcomes.
Danquah et al. (2010) demonstrated that type 2 diabetes patients exhibit 46 percent higher odds of malaria
infection compared to non-diabetics [6]. Wyss et al. (2017) extended these findings through Swedish nationwide
data, confirming that obesity and diabetes constitute risk factors for severe Plasmodium falciparum malaria
[24]. Thatoi (2018) documented that mor- tality rates reach 35.18 percent in diabetic malaria patients versus
13.69 percent in non-diabetics, with prolonged recovery periods and increased complications [20]. Carrillo-Larco et
al. (2019) systematically reviewed observational studies, confirm- ing consistent associations between diabetes and
both malaria incidence and severity across multiple geographic contexts.> Recent modeling efforts have begun
incorporating these co- morbidity effects. McClure et al. (2025) developed household- level entomological measures
linked to individual infection risk, demonstrating that host factors including metabolic sta- tus substantially modify
transmission probability even within shared environments.?* Nana-Kyere et al. (2024) provided asymptotic stability
analysis and cost-effectiveness evaluation for stratified populations, though diabetes-specific parameters remain to
be fully integrated.®®
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These advances represent initial steps toward comprehensive models capturing interac- tions among climate
forcing, vector dynamics, and host het- erogeneity—a critical frontier as diabetic populations expand in malaria-
endemic regions.

Future Directions

Advancing malaria modeling requires several priority shifts. First, empirical studies quantifying how specific comorbidi- ties
alter infection kinetics must inform model parameteri- zation. Clinical trials measuring parasitemia clearance rates in
diabetic versus non-diabetic patients would provide es- sential calibration data.>?° Such work should extend to other
prevalent conditions including HIV, malnutrition, and cardiovascular disease [5], [24]. Methodologically, hy- brid modeling
approaches combining mechanistic transmis- sion models with machine learning techniques could capture complex climate-
disease interactions without oversimplifica- tion .2>%7 Agent-based models incorporating household- level transmission,
human mobility patterns, and healthcare- seeking behavior offer complementary insights to determin- istic compartmental
frameworks.'®* Crucially, validation against longitudinal surveillance data—not just cross-sectional snapshots—should
become standard practice.’®!! From a policy perspective, models must generate actionable out- puts. Rather than
producing abstract reproduction numbers, frameworks should identify high risk subpopulations, optimal intervention timing
windows, and resource allocation strategies.’*° As climate change accelerates and chronic disease burdens grow, integrated
disease surveillance systems tracking both communicable and non-communicable conditions will become essential
infrastructure.®25

This review synthesized mathematical modeling approaches for malaria transmission, highlighting the evolution from sim-
ple Ross-Macdonald frameworks to increasingly sophisticated representations incorporating seasonality, age structure, and
immunity. While these advances improved our understanding of disease dynamics, significant gaps remain—particularly
regarding comorbidity interactions and climate change im- pacts on vulnerable populations. The convergence of rising
temperatures, expanding vector habitats, and growing dia- betic populations creates unprecedented challenges for malaria
control in endemic regions. Future modeling efforts must move beyond treating human hosts as interchangeable units and
recognize that vulnerability varies systematically across populations based on underlying metabolic conditions. As global
health systems face compounding pressures from both infectious and chronic diseases, mathematical models pro- viding
integrated risk assessments will prove invaluable for identifying high-risk subpopulations and informing targeted
interventions. Developing frameworks that explicitly account for host heterogeneity—particularly differential susceptibility
and recovery rates in diabetic versus non-diabetic individu- als under climate forcing—represents a critical frontier for
epidemiological modeling. Such integrated approaches will be essential for protecting the most vulnerable communities
as climate change continues to reshape disease transmission landscapes.
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