

Review Article

SmartAgroCare: An IoT & ML-Based Crop Health Monitoring System

Gursahiba Kaur¹, Divyansh Mahajan², Pooja Sharma³, Tarunpreet Kaur⁴, Shilpi Saxena⁵

^{1,2,3}Research Scholar, ⁴Assistant Professor (CSE), Department of Computer Science & Engineering, Khalsa College of Engineering & Technology

⁵Professor & Head of Department of Agriculture, Khalsa College of Engineering & Technology

DOI: <https://doi.org/10.24321/2394.6539.202507>

INFO

Corresponding Author:

Shilpi Saxena, Department of Computer Science & Engineering, Khalsa College of Engineering & Technology

E-mail Id:

saxenashilpi076@gmail.com

Orcid Id:

<https://orcid.org/0009-0009-8082-7609>

How to cite this article:

Kaur G, Mahajan D, Sharma P, Kaur T, Saxena S. SmartAgroCare: An IoT & ML-Based Crop Health Monitoring System. *J Adv Res Med Sci Tech.* 2025;12(3&4):40-47.

Date of Submission: 2025-10-04

Date of Acceptance: 2025-10-29

ABSTRACT

Agriculture is undergoing a digital transformation driven by emerging technologies such as Artificial Intelligence (AI), Machine Learning (ML), and the Internet of Things (IoT). This paper proposes a Crop Monitoring System that combines these technologies to enable real-time observation, analysis, and prediction of crop and soil conditions. The system utilises IoT-based sensors deployed across the field to collect key environmental and soil parameters, including temperature, humidity, soil moisture, pH level, and light intensity. These data are transmitted to a cloud platform for processing and analysis using ML algorithms. The AI component further enhances decision-making by detecting crop diseases, predicting yield, and identifying irrigation or nutrient requirements based on data patterns and image-based analysis. A web and mobile-based interface allows farmers to visualise the collected data, receive alerts, and take timely corrective actions. This intelligent integration helps in optimising water usage, reducing pesticide dependency, and improving overall crop productivity. Experimental evaluations and simulated results indicate that the system provides accurate, efficient, and scalable monitoring suitable for diverse agricultural environments.^{1,4,5}

Keywords: Smart Agriculture, Crop Monitoring, Internet of Things (IoT), Artificial Intelligence (AI), Machine Learning (ML), Precision Farming, Sustainable Agriculture.

Introduction

Agriculture is the foundation of human survival and economic growth, yet traditional farming methods often face challenges such as unpredictable weather conditions, pest infestations, and inefficient utilisation of natural resources. The rapid growth of the global population has further intensified the demand for enhanced productivity, precision, and sustainability in the agricultural sector. To overcome these limitations, the integration of advanced technologies such as Artificial Intelligence (AI), Machine Learning (ML), and the Internet of Things (IoT) has emerged

as a transformative approach in modern agriculture, enabling data-driven insights.

The proposed Crop Monitoring System utilises IoT-based sensors to collect real-time data on environmental and soil parameters such as temperature, humidity, pH level, moisture, and light intensity.

This integration of AI, ML, and IoT supports precision farming, improves productivity, minimises resource wastage, and promotes sustainable agricultural practices for a more resilient farming ecosystem.¹

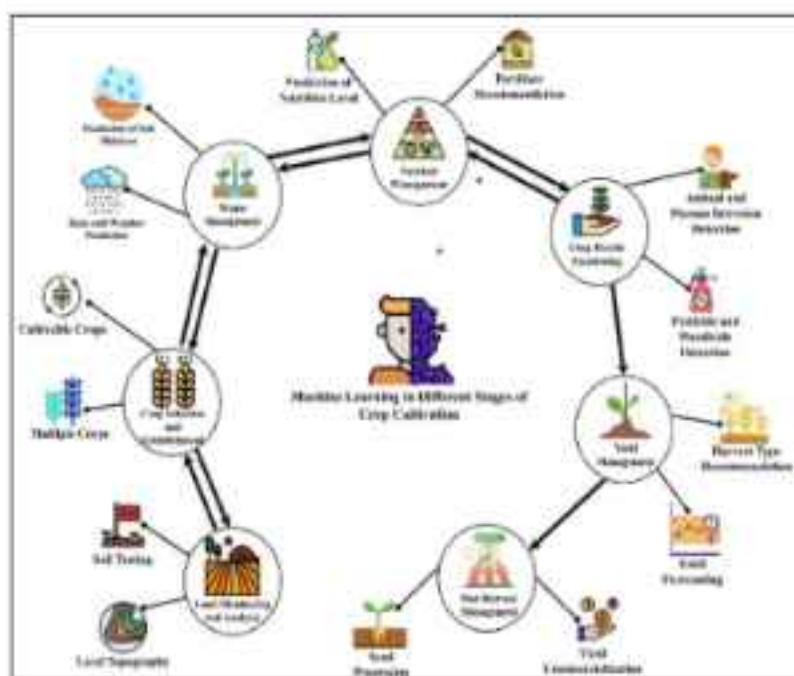


Figure 1. Machine Learning in Different Stages of Crop Cultivation

Literature Review and Gap Analysis

Aspect	What the Paper Achieved	Drawbacks Identified	How to Overcome / Improvements
Soil & Crop Analysis	Integrated soil analysis, irrigation, crop & fertilizer recommendations in one framework.	Limited generalization across different soils, crops, and climates.	Build modular, adaptive models for region-specific crops and soil types.
IoT Sensor Use	7-in-1 multifunctional sensor for NPK, pH, moisture, temp [5].	Costly & fragile in harsh rural conditions; requires maintenance.	Develop low-cost, rugged sensors, solar-powered, with offline storage.
Weather Data Integration	Weather API used for irrigation scheduling [4].	Dependent on stable Internet connectivity, which is often missing in rural areas.	Use offline/edge AI models with periodic sync instead of continuous internet dependency.
User Interface	Prototype with chatbot support.	Current system is not fully farmer-friendly, lacks multilingual & offline support.	Build mobile app with local languages, voice assistant, and icons for illiterate farmers [2].
Economic Feasibility	Potential to improve yields & reduce costs.	Expensive sensors and computing needs may hinder adoption for smallholder farmers.	Government subsidies, affordable subscription models, or community-based shared IoT systems.
Privacy & Data Security	Mentions federated learning as future work.	Current system still depends on centralized data collection.	Implement federated learning + edge computing for privacy and reduced dependency on central servers.

Methodology

The methodology adopted in this study integrates IoT-based real-time soil sensing, machine learning-based data modelling, and web deployment for delivering intelligent crop and fertiliser recommendations. The entire workflow is divided into three main stages: data acquisition, model development and training, and system design and implementation.

Data Acquisition and Preparation

Datasets were collected from ICAR (Indian Council of Agricultural Research), PAU (Punjab Agricultural University), and repositories like Kaggle, containing soil parameters (pH, N, P, K), humidity, rainfall, temperature, crop types, and fertiliser data. The data was cleaned, normalised, and prepared for model training, with crop type as the target variable. After deployment, real-time inputs from IoT sensors (for pH, moisture, NPK) and WeatherAPI (for climate data) will continuously feed the trained model for live crop and fertiliser recommendations.^{5,4}

Temperature (°C) (min - max)	Humidity (%) (min - max)	Relative humidity (min - max)	pH	N	P	K	Crop	Name	Time required to grow
15	50	50	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
17	55	55	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
18	58	58	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
19	60	60	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
21	65	65	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
22	68	68	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
23	70	70	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
24	72	72	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
25	75	75	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
26	78	78	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
27	80	80	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
28	82	82	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
29	85	85	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
30	88	88	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
31	90	90	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
32	92	92	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
33	95	95	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
34	98	98	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
35	100	100	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
36	102	102	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
37	105	105	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
38	108	108	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
39	110	110	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
40	112	112	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
41	115	115	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
42	118	118	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
43	120	120	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
44	122	122	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
45	125	125	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
46	128	128	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
47	130	130	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
48	132	132	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
49	135	135	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
50	138	138	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
51	140	140	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
52	142	142	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
53	145	145	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
54	148	148	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
55	150	150	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
56	152	152	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
57	155	155	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
58	158	158	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
59	160	160	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
60	162	162	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
61	165	165	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
62	168	168	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
63	170	170	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
64	172	172	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
65	175	175	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
66	178	178	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
67	180	180	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
68	182	182	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
69	185	185	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
70	188	188	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
71	190	190	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
72	192	192	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
73	195	195	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
74	198	198	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
75	200	200	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
76	202	202	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
77	205	205	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
78	208	208	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
79	210	210	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
80	212	212	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
81	215	215	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
82	218	218	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
83	220	220	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
84	222	222	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
85	225	225	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
86	228	228	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
87	230	230	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
88	232	232	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
89	235	235	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
90	238	238	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
91	240	240	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
92	242	242	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
93	245	245	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
94	248	248	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
95	250	250	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
96	252	252	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
97	255	255	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
98	258	258	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
99	260	260	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
100	262	262	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
101	265	265	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
102	268	268	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
103	270	270	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
104	272	272	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
105	275	275	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
106	278	278	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
107	280	280	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
108	282	282	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
109	285	285	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
110	288	288	5.5	0.5	0.5	0.5	Wheat	Common Wheat	0
111	290	290	5.5						

Workflow

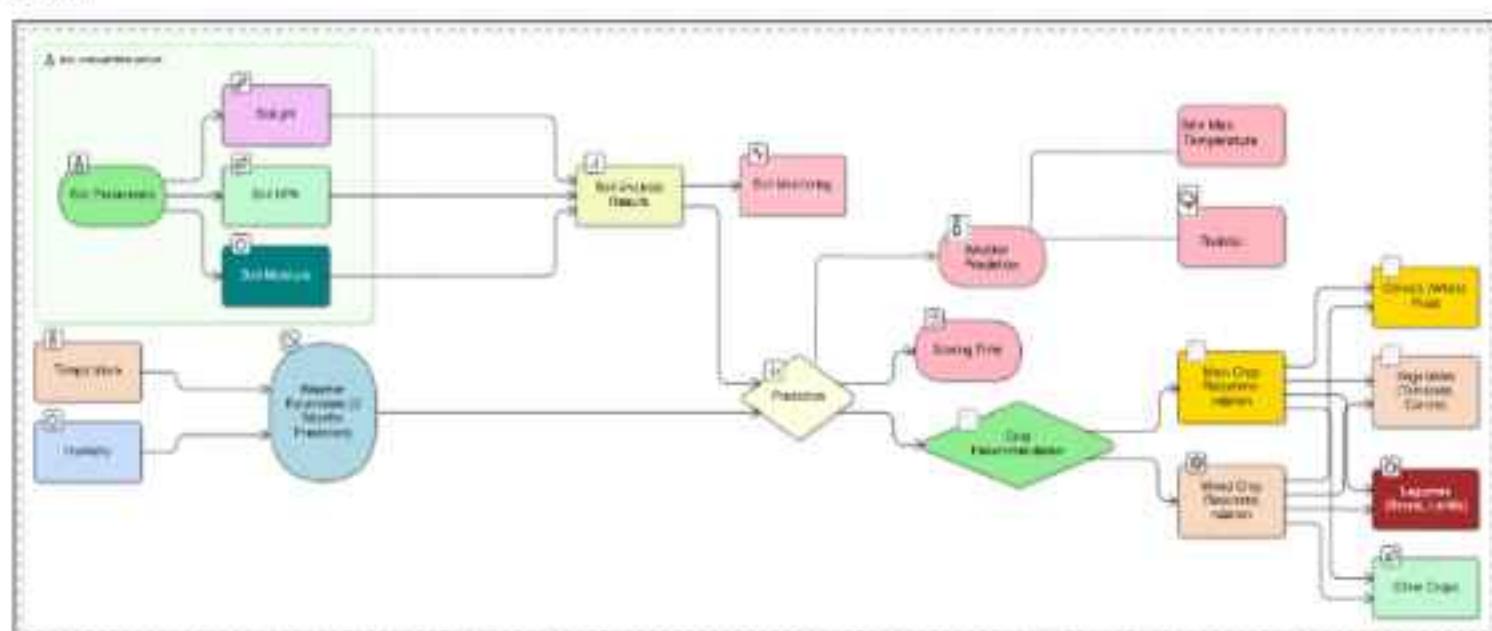


Figure 3.2.1. Workflow of Crop Recommendation

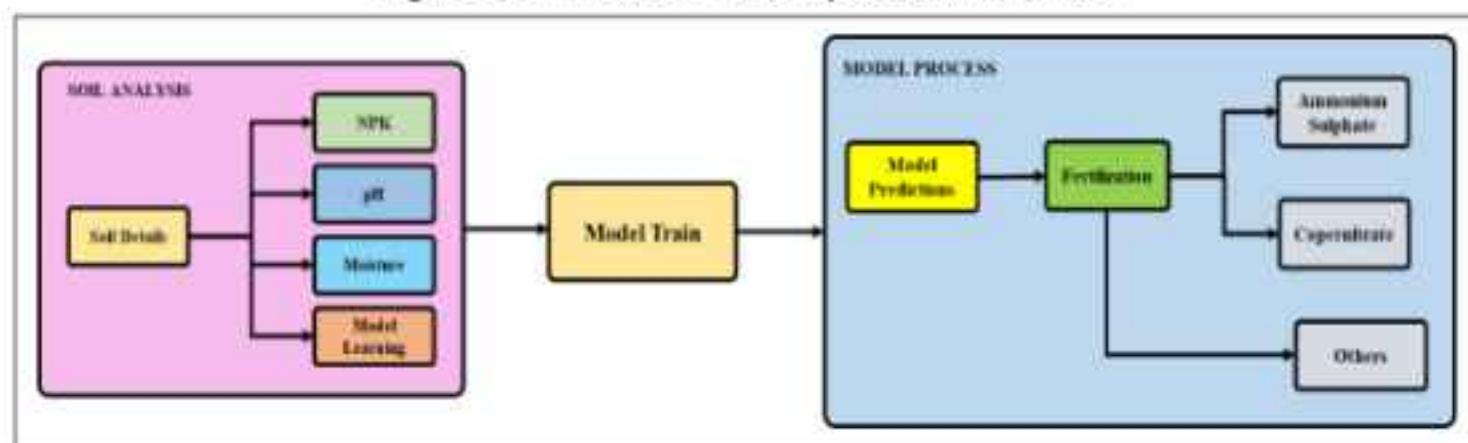


Figure 3.2.2. Workflow of Fertilization Recommendation

Model Development and Training

A Random Forest Classifier was implemented in Python (scikit-learn) for crop recommendation due to its robustness and accuracy in handling nonlinear soil-weather relationships. The dataset was split into 80% training and 20% testing sets, and evaluated using accuracy, precision, recall, and a confusion matrix. The model achieved about 99% accuracy and precision, showing excellent reliability and minimal misclassification for real-world agricultural prediction tasks.⁵

Tools and Technologies Used

The implementation employs Python as the primary programming language, utilizing the following key libraries and frameworks:

- **Scikit-learn:** for model training and evaluation.
- **Pandas, NumPy:** for data manipulation and preprocessing.
- **Matplotlib, Seaborn:** for visual analytics and confusion matrix visualisation.
- **Flask:** Flask RESTful API used to connect model and front-end.
- **HTML, CSS, JavaScript:** for user interface development.
- **WeatherAPI:** for weather parameter integration in live mode.

This integrated pipeline ensures that the proposed system can evolve from offline model training to real-time prediction and recommendation delivery, facilitating intelligent agricultural decision-making for diverse climatic and soil conditions.⁴

Results and Discussion

Crop Recommendation Results

Comparison of Different Model Results:

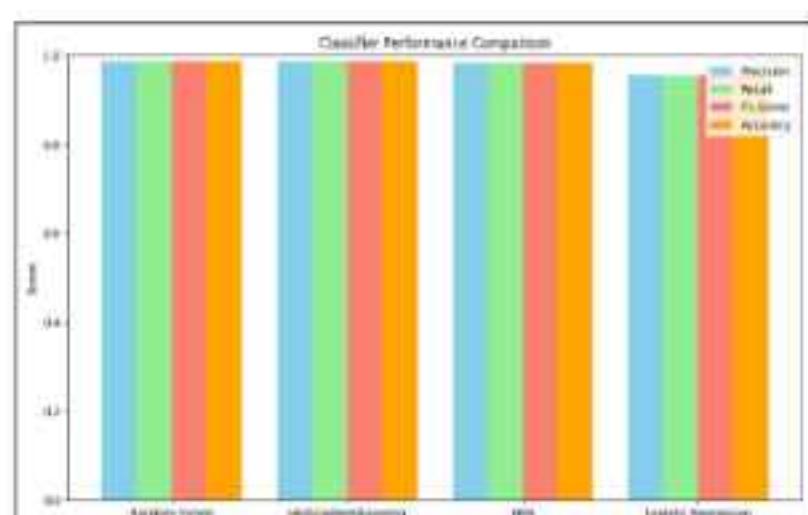


Figure 4.1.1. Bar graph showing comparison of various accuracy parameters

Model	Crop Prec	Crop Rec	Crop F1	Crop AUC	Season Prec	Season Rec	Season F1	Season AUC
Random Forest	0.9929	0.9929	0.9929	0.9961	0.9929	0.9929	0.9929	0.9961
HotGradientBoosting	0.9929	0.9929	0.9929	0.9959	0.9929	0.9925	0.9923	0.9959
KNN	0.9904	0.9904	0.9903	0.9948	0.9904	0.9904	0.9903	0.9948
Logistic Regression	0.9488	0.9488	0.9488	0.9730	0.9529	0.9493	0.9488	0.9730

Figure 4.1.2. Recall, F1-Score, AUC OF Fertilization recommendation

Best Model Result (Random Forest):

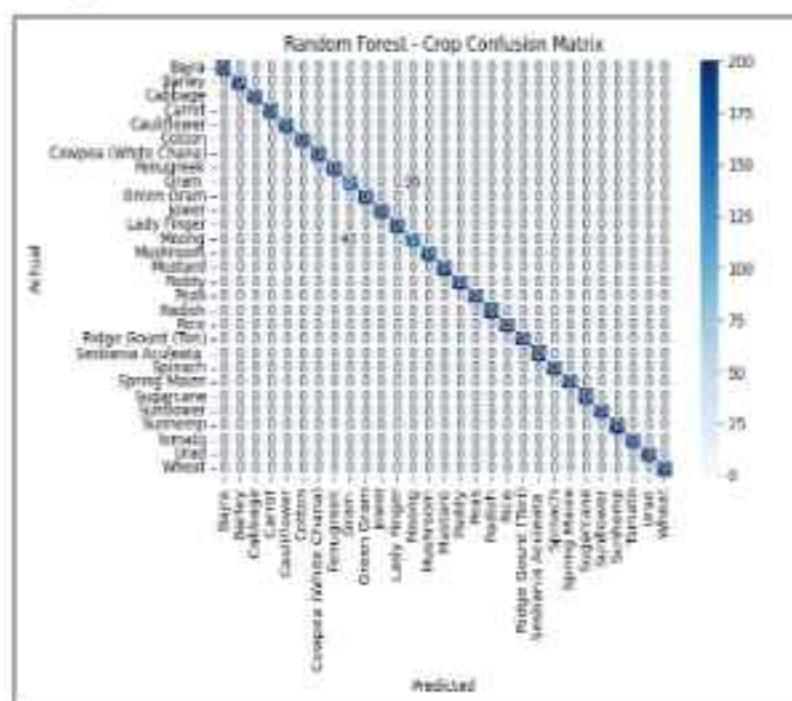


Figure 4.1.3. Random Forest Accuracy matrix

Class	Precision	Recall	F1-Score	Accuracy
Bajra	1	1	1	0.9867
Barley	1	1	1	0.9867
Cabbage	1	1	1	0.9867
Carrot	1	1	1	0.9867
Cauliflower	1	1	1	0.9867
Cotton	1	1	1	0.9867
Cowpeas (White Chana)	1	1	1	0.9867
Fenugreek	1	1	1	0.9867
Gram	0.8	0.82	0.8095	0.9867
Green Gram	1	1	1	0.9867
Jowar	1	1	1	0.9867
Lady Finger	1	1	1	0.9867
Moong	0.8154	0.795	0.8051	0.9867
Mushroom	1	1	1	0.9867
Mustard	1	1	1	0.9867
Paddy	1	1	1	0.9867
Peas	1	1	1	0.9867
Raddish	1	1	1	0.9867
Rice	1	1	1	0.9867
Ridge Gourd (Tori)	1	1	1	0.9867
Sesbania Aculeata	1	1	1	0.9867
Spinach	1	1	1	0.9867
Spring Maize	1	1	1	0.9867
Sugarcane	1	1	1	0.9867
Sunflower	1	1	1	0.9867
Sunhemp	1	1	1	0.9867
Tomato	1	1	1	0.9867
Urad	1	1	1	0.9867
Wheat	1	1	1	0.9867
Accuracy			0.9867	0.9867
Macro Avg	0.9867	0.9867	0.9867	0.9867
Weighted Avg	0.9867	0.9867	0.9867	0.9867

Figure 4.1.4. Accuracy parameters of data labels in Random Forest

Fertilization Recommendation Results

Comparison of Different Models:

Model	Accuracy	Precision	Recall	F1-Score	AUC
Random Forest	0.938108	0.936694	0.938216	0.935226	0.966529
Decision Tree	0.901947	0.901865	0.902066	0.900720	0.946947
Gradient Boosting	0.906815	0.904205	0.906936	0.904322	0.949585
Logistic Regression	0.399166	0.380531	0.399068	0.371314	0.674500
SVM (RBF)	0.422114	0.428083	0.422573	0.392530	0.687210
K-Nearest Neighbors (KNN)	0.854659	0.856490	0.854923	0.846572	0.921406

Figure 4.2.1. Accuracy, Precision, Recall, F1-Score, AUC of Fertilization Recommendation

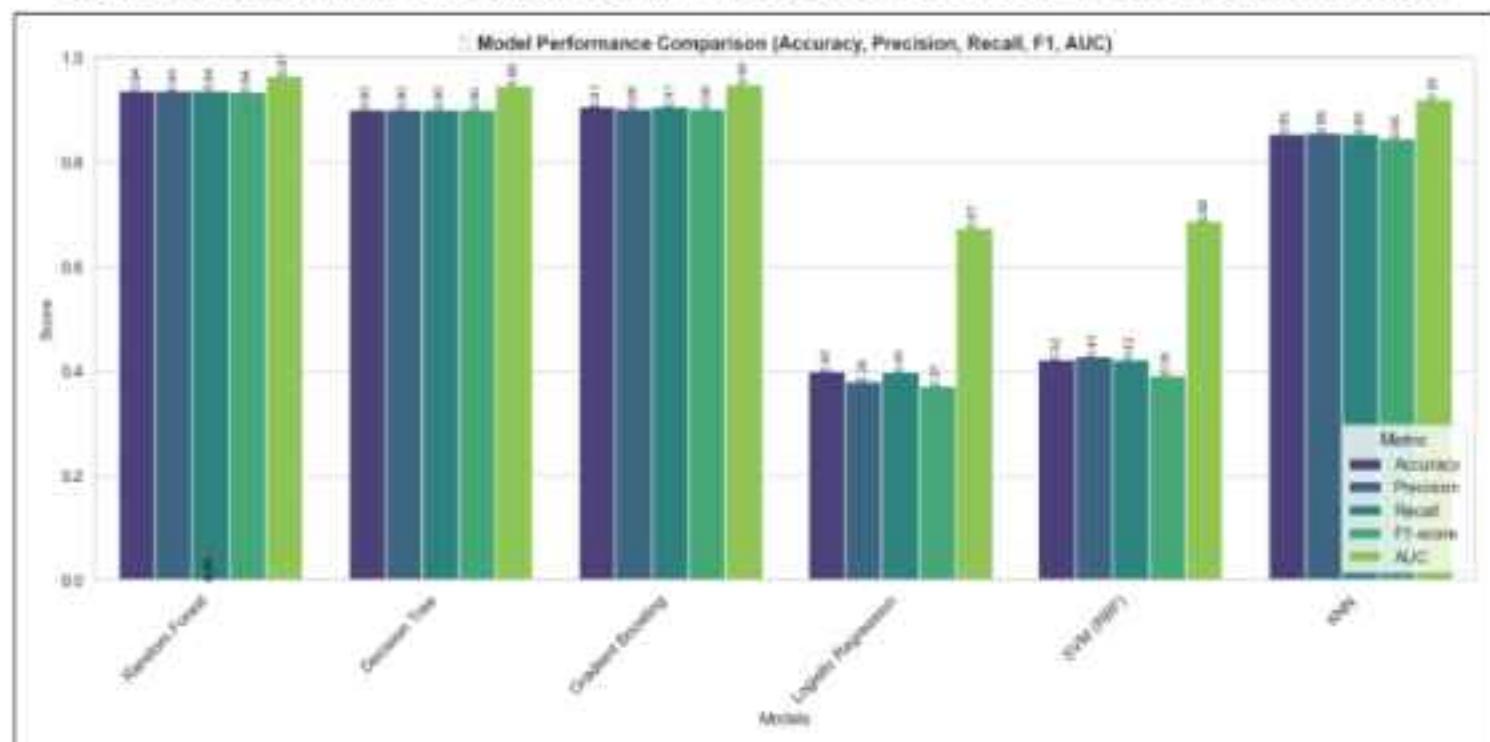


Figure 4.2.2. Bar Graph showing comparison of various accuracy parameters

Random Forest Model Training's Results (Best one):

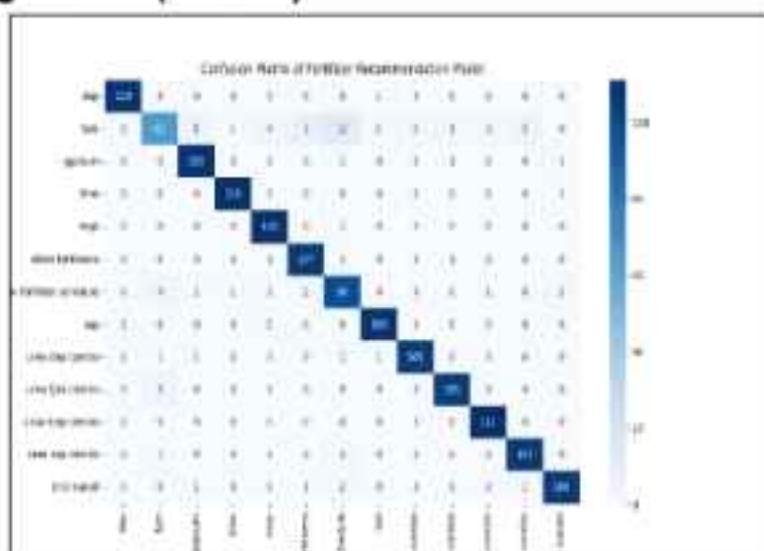


Figure 4.2.3. Confusion matrix of Random Forest

		precision	recall	f1-score	support
	dap	0.97	0.99	0.98	110
	fym	0.96	0.99	0.97	111
	100:50:50	0.93	0.97	0.95	111
	lime	0.98	0.99	0.99	111
	mop	0.93	0.99	0.96	111
	other fertilizers	0.93	0.97	0.94	110
	routine fertilizer schedule	0.83	0.88	0.86	111
	ssp	0.96	0.97	0.97	111
	urea dap combo	0.97	0.95	0.96	110
	urea fym combo	0.95	0.95	0.95	110
	urea mop combo	0.97	1.00	0.98	111
	urea ssp combo	0.95	0.97	0.96	110
	zinc based	0.95	0.95	0.95	111
	accuracy			0.94	1438
	macro avg	0.94	0.94	0.94	1438
	weighted avg	0.94	0.94	0.94	1438

Accuracy: 0.9381
Macro-average AUC: 0.9665

Figure 4.2.4. Accuracy parameters of data labels in Random Forest

User Interface



Figure 4.3.1. User interface of Fertilization Recommendation

Figure 4.3.2. User Interface of Crop Recommendation

Figure 4.3.3. User Interface of Crop Recommendation: Output Page

Conclusion

SmartAgroCare provides a cost-effective and transparent approach to precision farming by merging IoT sensing, weather intelligence, and machine learning to support data-driven agricultural decisions. The system not only enhances fertiliser and irrigation efficiency but also promotes sustainable resource utilisation and improved crop yield. By providing real-time insights through an accessible web interface, it empowers farmers to make timely and informed choices that directly impact productivity and profitability. Moreover, its adaptable design allows seamless integration with additional sensors or APIs, ensuring scalability for varied regional and crop-specific needs. Future work will focus on large-scale deployment, cross-regional testing under diverse climatic conditions, and continuous enhancement through advanced analytics and user feedback. In the long run, SmartAgroCare aims to bridge the technological gap between modern research and field-level implementation, contributing to global food security and the advancement of sustainable agricultural practices.²

Although the proposed IoT & ML Crop Health Monitoring framework shows strong performance, several operational and methodological limitations are there as there is a lack of real-field testing, highlighting the need for future on-ground trials to validate the proposed solutions.

References

1. [FAO. (2017). The State of Food and Agriculture: Leveraging automation, sensing and data for better agriculture.
2. Thaler, R. H., & Sunstein, C. R. (2008). *Nudge: Improving Decisions About Health, Wealth, and Happiness*. Yale University Press.
3. Documentation and developer guides for WeatherAPI (for forecast integration).
4. Representative IoT soil sensor integration examples and technical notes (hardware vendor application notes).
5. L. Breiman. (2001). Random Forests. *Machine Learning*, 45(1), 5–32.