qesearch 4,

National Conference on Behavioural Economics and Intelligent Decision Systems for 55‘ [ X

.
&
a0t

Climate Change and Sustainable Development —
International Journal of Healthcare Education & Medical Informatics
Volume 13, Issue 1&2 - 2026 e

Research Article

Integrating Artificial Intelligence in Structural
Health Monitoring: A Path Toward Climate-

Resilient Infrastructure
Riti Mahaj an', Kulwinder Kaur®, Vivek Gupta®, Subham Sharma*

! Assistant Professor, Smt Rama Chopra S.D.Kanya Mahavidyalaya, Pathankot, India
234Assistant Professor, G N D U College, Pathankot, India
DOI: https://doi.org/10.24321/2455.9199.202602

I NF O A BSTRACT

Corresponding Author: This paper explains how artificial intelligence (Al) is changing the way
Riti Mahajan, Smt Rama Chopra Sanatan Dharam we check the safety and health of structures like bridges, buildings,
Kanya Mahavidyalaya, Pathankot, India and other constructions. Earlier, these Al-based inspections were done
E-mail Id: by people who took a lot of time, cost more money, and sometimes
ritimadhav@gmail.com were not fully accurate. Now, Al-based systems use deep learning, the
Orcid Id: Internet of Things, and machine learning to find and predict damage
https://orcid.org/0009-0006-2300-5834 automatically and in real time. Al technologies such as artificial neural
How to cite this article: networks (ANNs), convolutional neural networks (CNNs), and support
Mahajan R, Kaur K, Gupta V, Sharma S. Integrating vector machines (SVMs) are used to detect cracks, rusting, and other
Artificial Intelligence in Structural Health problems more accurately. These systems can also study environmental
Monitoring: A Path Toward Climate-Resilient conditions like temperature and humidity, which affect the structure
Infrastructure. J. HealthCare Edu. & Med. Inform. over time. Overall, Al has a structured structural health monitoring
2026;13(1&2):240-250. (SHM) promise system that only reacts after damage is seen, to one
Date of Submission: 2025-10-04 that can predict and prevent problems before they become serious. This
Date of Acceptance: 2025-10-28 helps in building safer, smarter, and more sustainable infrastructure

for the future.

Keywords: Artificial Neural Network (ANN), Machine Learning
(ML), Deep Learning (DL,) Internet of Things (loT), Vibrational Analysis

Introduction before becoming serious. More efficiency and accuracy
are achieved by Al-based SHM systems, and the need
for constant human inspection is reduced. Structural
health is continuously being monitored under various
conditions, including heavy rain and weather changes, to
make infrastructure safer and smarter. Techniques such
as Artificial Neural Networks (ANNs), Convolutional Neural
Networks (CNNs), Recurrent Neural Networks (RNNs), and
Support Vector Machines (SVMs) are now being used for
the analysis of data from sensors, accelerometers, and
images to identify cracks, corrosion, and other structural
issues. More accurate detection is achieved through the

Structural Health Monitoring (SHM) has become very
important in modern civil and mechanical engineering to
keep structures safe, strong and long-lasting. As bridges,
high-rise buildings, tunnels, and offshore platforms become
more complex, traditional inspections that rely on manual
checks are often slow, costly, and not very accurate.
Now things are changing with the revolution of Al-based
technologies such as machine learning (ML), deep learning,
and the Internet of Things (loT). These technologies allow
data to be collected automatically for monitoring and
analysis in real time. Problems are detected and predicted
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combination of different sensors, such as vibration sensors,
acoustic devices, and optical tools. With the use of Edge Al
and loT systems, data is processed on-site more quickly,
thus reducing the need for central computers. Inspection
is made smarter and healthier by using technologies such
as digital twins and drones. Due to the effects of climate
change, monitoring is considered more important because
materials can be weakened and structural behaviour can be
altered by temperature, humidity, and extreme weather.
Maintenance is now performed more efficiently, and
structures are improved through Al systems. It has been
shown by studies that bridges are the main focus of these
Al systems (37%), followed by high-rise buildings (18.5%)
and loT-based infrastructure (11.1%). This demonstrates
how safer and smarter cities are being created through
the use of Al.

Al has changed SHM from a reactive approach to a proactive
one. It allows early detection of faults, real-time analysis of
data, and adaptive learning, all of which are important for
building long-lasting and sustainable structures. However,
there are still challenges, including limited data availability,
the high cost of sensors, cybersecurity risks, and the
complexity of integrating these systems. Overcoming these
challenges requires teamwork between civil engineers,
computer scientists, and material experts. SHM continues to
develop, and Al will remain a key technology that connects
automation, resilience, and sustainability for the next
generation of smart infrastructure.

Literature Review on Climate Change Impacts
and Structural Health Monitoring

Stewart, Wang, and Nguyen?? were among the first
researchers to study how climate change could affect
reinforced concrete (RC) structures using probability-based
methods. Their study, published in Engineering Structures
in 2011, used Global Climate Models (GCMs) to predict
changes in CO; levels, temperature, and humidity over
the next hundred years in Australian cities. They found
that the risk of carbonation-related corrosion in concrete
could rise by more than 400% by the year 2100. Chloride
corrosion, especially near coastal areas, could increase
by around 15%. These findings show that climate change
may speed up the deterioration of bridges, ports, and tall
buildings. The authors stressed the need for durability
models that consider uncertainty in environmental and
material factors. Their work laid the foundation for later
studies connecting climate-related damage with life cycle
cost and sustainability analysis.

Following this, Lee, An, and Kim?® expanded the research
by focusing on the life cycle cost and environmental impact
of bridges under different climate scenarios. Their 2025
study in Scientific Reports used Monte Carlo simulations
to measure how temperature and humidity changes affect

maintenance needs, repair expenses, and carbon emissions.
Their results showed that both cost and environmental
impact could increase by up to 12.4%. They also highlighted
the importance of preventive maintenance and recycling
to improve sustainability.

Al and ML have been recognised as major advancements
in SHM under changing climate conditions. Figueiredo et
al.® investigated how Al-based damage detection in bridges
is influenced by rising temperatures as per a 2025 study.
They used the Z-24 Bridge data set from Switzerland and
tested Al models under future climate conditions based on
RCP 2.6, RCP 4.5, and RCP 8.5 scenarios. They found that if
Al models are trained only on old climate data, they may
give wrong results or alarms in the future. This shows the
need for Al models that can continuously learn and adapt
to changing environmental conditions, similar to Stewart et
al.’s call for adaptive reliability models. A global analysis by
Colpari-Pozzo et al.* reviewed over 6,000 research papers
on climate-related deterioration of concrete structures.
Published in 2025, the study shows grooming international
collaborations on Al and predictive analytics for coll and
durability monitoring. However, most research focused
on developed countries like China and the United States,
while developing regions were less represented.

Physical damage is observed to extend beyond the impact
of climate change. They force an in-house structure on how
it should be designed and governed. In 2025, Hellenic Open
University, Martzaklis, observed that current design codes
dependent on old climate data are not prepared for extreme
events like heat waves, floods, or hurricanes. Combined
case studies with risk analysis were conducted, and the
use of materials like self-healing, Ultra-High-Performance
Concrete (UHPC), and Al-based monitoring systems was
suggested. It was argued that these technologies can extend
the structure’s lifespan while minimising maintenance costs.
In other research, Akturk and Hauser?” in Natural Hazards
(2025) emphasised cultural heritage protection. Disaster
Risk Reduction (DRR) and Climate Change Adaptation
(CCA) practices were explored as being commonly done in
isolation. It was discovered that even though frameworks
such as the Paris Agreement and the Sendai Frameworks
advocate for resilience, their executions at localities are
weak. Strengthened cooperation, risk-based insurance,
and combining policy responses were advised to safeguard
heritage destinations from floods, heatwaves, and other
climate-related vulnerabilities.

Overall, these studies illustrate the way research has
developed —from corrosion risk forecasts?? to sustainability
and life cycle cost analysis®® then Al-based monitoring®
and finally policy and cultural protection.?” All the research
points to the same general point: to safeguard infrastructure
and heritage from climate change. Therefore, a requirement
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of an adaptive, data-driven, and multidisciplinary approach
integrating engineering, Al, and effective policy planning
is required.

As shown in Fig. 1 above, the bar graph clearly indicates
how Al is being implemented in SHM. Maximum usage of
Al technologies is in bridge monitoring (37%), followed by
high-rise buildings (18.5%), loT-based smart infrastructure
(11.1%), and a smaller share in health care applications
(3.7%). The main objective of this chart is to demonstrate
that Al is mostly being applied to upgrade infrastructure
safety and support predictive maintenance.

Fig. 2. The aforementioned figure predicts the percentage
share of various application domains in the research study.
Bridges account for a huge portion at 37.0%, followed by
building high-rise buildings, each comprising 18.5%. loT
sectors represent 11.1%, while healthcare shows a smaller
share at 3.7%. SHM research methodology is highlighted
in different domains through the pictorial presentation
of a pie chart.
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Comparative Study on Al-Based Structural
Health Monitoring and Climate-Resilient
Infrastructure

Methodological Approaches

Two major methodological directions are evident in the
reviewed studies: Al-based monitoring systems and climate-
adaptive design frameworks. Al-based SHM methodologies
vary and are largely reliant, both for actively monitoring real-
time damage and recognising patterns within monitoring
data, on ML, deep learning, and ANN. Most approaches are
integrated with the 10T and other big data methodologies.
For example, Shibu et al. (2023) utilised multimodal sensing
technologies — fibre-optic and ultrasonic sensors — which
have been shown to detect cracks with a high level of
real-time reliability. Other examples of advanced deep
learning architectures applied to SHM include CNN, RNN,
and edge Al specifically designed for autonomous structural
inspection. Conversely, researchers such as Stewart et al.
(2011) and Lee et al. (2025) used probabilistic models, life-
cycle assessments (LCA), and Monte Carlo simulations to
assess deterioration and climate-induced risk over longer
timeframes. While the former study types focused on
adapting during real time, the latter methodologies focused
on future risk (multi-timeframe) and sustainability.

Experiments with Al-based SHM showed notable
improvement in operational effectiveness and detection
accuracy. Multi-stage ANNs showed 94% accuracy for
composite T-joint degradation prediction, while ML
methods like SVM and Random Forest attained up to 88—
92% precision in damage prediction. Real-time monitoring
achieved using edge-Al applications reduced the inference
time from three seconds to twenty milliseconds. Conversely,
climate research indicated alarming patterns—carbonation-
induced corrosion can increase by over 400% by 2100
(Stewart et al., 2011), and the cost of bridge maintenance
could rise by 12.4% with climate change (Lee et al., 2025).%°

Advantages and Applications

Al-based SHM gives automation, scalability, and huge
precision, incorporating infrastructure such as buildings
(18.5%), bridges (37%), and smart infrastructure (11.1%).
Predictive maintenance, safety, and data collection are
improved by combining loT-enabled sensors with UAV-
based monitoring. On the contrary, climate-resilient
design studies promote sustainable materials (such as
self-healing concrete and UHPC) for long-term resilience.
Future smart and climate-adaptive infrastructure systems
can be approached holistically by integrating environmental
modelling and Al-driven monitoring.

Challenges and Research Gaps

Both domains encounter operational and technical
difficulties. High sensor cost, data heterogeneity, and
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interoperability problems are the limitations of Al-driven SHM, while model uncertainty,
data generalisation, and lack of regional calibration are problems with climate-based
investigations. Furthermore, even if Al models are very accurate, they frequently lack

Table 1.Existing methodologies for Structural health monitoring using Al

industry standardisation and explainability. A cohesive framework that integrates climate-
adaptive modelling with Al intelligence is necessary to create future infrastructure
solutions that are autonomous and sustainable.

Reference No.

Methodologies

Results

Advantages

Applications

Challenges

(1]

Al with loT and big data
for SHM in bridges; non-
destructive testing (NDT),
vibration analysis, image-
based monitoring

Al enhances monitoring accuracy,
damage detection and predictive
maintenance of bridges

High efficiency,
early damage
detection, improved
safety, long-term
sustainability

Bridge construction,
management,
and maintenance
within Intelligent
Transportation Systems

Human errors in traditional
methods, the cost of sensors,
integration issues, and limited

accessibility in some bridge

parts

(2]

Al/ML algorithms with
multimodal sensors (eddy
current testing, UPV,
fiber optic sensing, image
processing)

Crack width avg. 2.38 cm, length
avg. 63.36 cm; model predicts crack
propagation in multiple directions

Real-time monitoring,
predictive
maintenance, and
climatic factor
analysis

Buildings and bridges
under varying climatic
conditions

Economic cost of fiber optic
sensors, dependency on high-
resolution imaging, and data
analysis complexity

(3]

Systematic review of Al in
SHM; ML (SVM, Random
Forest), DL (CNN, RNN, RL)

Al enables real-time damage detection,
anomaly classification, and predictive
maintenance

Automation,
scalability, and
enhanced accuracy in
anomaly detection

Bridges, high-rise
buildings, offshore
platforms

Data scarcity, model
interpretability, computational
complexity, scalability across
structures

(4]

Deep learning-based
SHM; CNN, RNN, GANs,
Transformers, UAV

DL achieves robust damage and defect
detection; potential for automation of

Non-destructive,
scalable, integrates
UAVs/digital twins,

Infrastructure
monitoring, UAV-
assisted inspections,

Early-stage development, cost,
reliability, and integration
of DL models into field

(5]

integration, digital twins, SHM and accurate fault e .
o . . defect classification applications
physics-informed learning detection
- SVM (Linear & Sigmoid): Highest - SVM: High - Structural Health - AdaBoost underperformed

Supervised machine learning
techniques (SVM with linear,
RBF, polynomial, sigmoid
kernels; Naive Bayes; Feed-
Forward Neural Network;
Ensemble methods: Random
Forest, AdaBoost

precision (87—-88%), fastest classification
(~0.1 ms)
- Random Forest (75 estimators): High
precision (82—92%) but slower
- Naive Bayes: Moderate precision (78%)
- FNN: Poor precision (58-74%)
- AdaBoost: Worst (57%)

precision, low
computation time
- Random Forest:
Reliable with large
estimators
- Ensemble learning
provides diversity

Monitoring (SHM) in
aircraft and metallic
structures
- Identifying the type
and severity of damage
via acoustic emission
signals

significantly
- Random Forest required
higher computation time
- Limited dataset (60 samples)
- PCA did not improve much
- Classifier performance varied
across scenarios
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Al-based methods: ML, deep
learning, feature extraction,
system identification,
diagnostics, big data analytics

Demonstrated superior performance in
system identification, damage detection,
and prediction of structural behavior

Handles large
datasets, improves
feature extraction,

and enables real-time
monitoring

Structural health
monitoring (SHM),

intelligent infrastructure,

smart cities

Data heterogeneity,
integration across domains,
and scalability

(7]

Artificial Neural Networks
(ANN), GNAISPIN model, FEA
simulations, DRAT algorithm,

94.1% damage prediction accuracy
for T-joint composites; up to 82%
improvement with GNAISPIN

High accuracy,
independent of
load variations, and
the capability for
multiple damage
detection

Composite T-joints in
maritime structures,
beams with
delamination

Complexity of ANN training,
sensor configuration
dependency, need for
extensive validation

Multi-stage ANN, statistical
ANN, finite element
modeling, guided wave

More reliable damage prediction;

Reduces noise
influence, improves

Damage identification

in concrete-steel rebars,

Measurement noise, modeling

weight clustering), Kneron
KL520 chip testing

3sto 20ms

security, cost
optimization

[8] . accurate detection of cracks, debonding, reliability, and structural vibration error, and limited sensitivity of
propagation, spectral . ) . .
. and shear slip combines local & analysis, and debonding global methods
element modeling, clonal lobal detection detection
selection algorithm (CSA) g
Efficiency, safet AEC industry: smart N s
Al + loT-enabled sensors, . o . v, y . . ¥ Cybersecurity, interoperability,
. . Real-time monitoring of SHM, improvements, buildings, infrastructure .
predictive analytics, _ . L . o . cost of adoption, and
[9] . . predictive maintenance, and optimized reduced downtime, monitoring, predictive L
generative design, UAVs, . . . . workforce training
. ) construction resource allocation smart adaptive maintenance, .
robotics integration - . requirements
buildings automation
Enhances efficienc
Al & ML (neural networks, Demonstrated applications in SHM, . Vs . . . I s
. ) . . reduces material Civil engineering: SHM, | Data quality, interoperability,
SVM, genetic algorithms, disaster management, predictive . - . .
[11] . . . . . waste, and increases smart infrastructure, high computational demands,
digital twins, predictive maintenance, and sustainable , . )
, . infrastructure disaster response and ethical concerns
analytics) construction .
longevity
Edge-Al, optimized CNN Low latency, reduced Limited device operator
( ianti'zatri)on runin Real-time crack detection with 92.4% bandwidthy'im roved | Real-time SHM (bridges), || ooy forcf timized
[12] q P & accuracy; inference time reduced from /IMP robotics, surveillance, pport, P

automation

models, and generalization
issues
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Statistical ANN, sub-
structuring ANN, vibration

Improved reliability of damage

Reduces
computational cost,

Bridge and infrastructure
SHM, steel rebar crack

Sensitive to data quality,
requires extensive training,

13 + guided wave analysis identification; efficient crack & . . . . . . .
23] 6 . YsIS, J . identifies both local detection, vibration and complexity of hybrid
spectral finite element debonding detection .
. & global damage monitoring models
modeling
Al/ML (data-driven & model- Enables automated
driven SHM), loT integration, | Effective for monitoring, controlling, and | pattern recognition, Bridge SHM, decision- Sensor installation & cost,
[14] finite element analysis, evaluating bridge health; demonstrated | real-time assessment, | making in maintenance, | data fusion issues, uncertainty
pattern recognition, ANN ANN success and improves NDT/NDE inspections in modeling, noise sensitivity
models damage localization
Wireless Smart Sensor . . . . . N
Reduced cost/time compared to wired . Bridges, high-rise Power supply limitations,
Networks (WSSN), Al/ ) Economical, scalable, s > . e
. . . systems; accurate crack/corrosion . buildings, chimneys, environmental sensitivity,
ML integration, acoustic . . . flexible, autonomous
[15] . o detection; real-time displacement and . . . offshore platforms, hardware damage, lack of
emission, GPS monitoring, . L functionality, suitable . .
. . - strain monitoring nuclear reactors standards for field execution
smart paints, piezoelectric for large structures
smart aggregates
Vibration-based and strain- Tracks structural
based SHM systems, load . . . changes over time, Highway bridges, load Lack of validated SHM usin
. . .y. Effective in detecting damage, real-time . & o g .y .g . . - &
rating with finite element . L ) integrates codified capacity estimation, ambient data; difficulty
[16] L structural capacity estimation is possible; . . S
models, and reliability - . ) L frameworks, and damage detection, in long-term service life
. L reliability algorithms predict service life . . . . .
analysis for service life enables real-time service life prediction estimation
estimation monitoring
Wireless Sensor Networks
WSNs) for SHM, MEMS - . . Low-cost, scalable, Power efficiency, high
( ) ’ . Efficient for vibration-based damage . . . . v, g
accelerometers, strain detection real-time bridee monitorin reduced installation/ Bridges, railroads, data rate/throughput,
[17] sensors, LVDTs, fiber optic ! & & maintenance cost, buildings, seismic time synchronization, fault

sensors, distributed data
processing, Tiny OS/Contiki
0S

and scalable deployment across
hundreds of nodes

easier deployment in
remote locations

monitoring

tolerance, and limited
computation in sensor nodes
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Case studies SHM: dames,
bridges, platforms, buildings,

Real-time monitoring feasibility; anomaly

Continuous,
automated, real-

Civil infrastructure:
dams, bridges, offshore

Lacking baselines, high sensor
density, cost, environmental

like OZClim to predict CO2,
temperature, and humidity

effects on concrete corrosion.

increase by ~15%. Results are most
sensitive to CO2 concentration changes.

cost-effective
adaptation strategies;

incorporates
uncertainty modeling

for urban and coastal
regions under high CO2
emission scenarios.

18 detection; validated models (Humber time safety data; S S .
[18] tunnels; Al, MISTRAL, Bridee. Singanore brid (es) mainten\gnce platforms, tall buildings, variability, and limited
DAMSAFE g€, oIngap & .. s nuclear plants, tunnels localizationi!
decisions; resilience
o Remote healthcare, . . .
0T smart health monitoring . N Remote access, . Security/privacy, device
Improved patient monitoring, reduced chronic management,
(Al, DL, sensor-based, L . . reduced costs, management, operator
[19] hospitalizations, real-time disease . elderly care, . .
smartphone-based, . . personalized care, . training, noisy data, energy
. tracking, anomaly detection o . telemedicine, smart . 1l
microcontroller) smart city integration cities requirements
Statistical pattern Aerospace
recognition: operational Lack of rigorous statistical validation; Data-driven, reduces | . P g Environmental/operational
. o . . . infrastructure: bridges, L . N
[20] evaluation, acquisition, effective unsupervised novelty/outlier model dependence, oy . variability, big data, validation
. . . buildings, composite - . S
feature extraction, modeling; detection scalable advances limits, statistical rigor
. plates, beams
NN, novelty detection
Structural health
Statistical process control, . . . uantitative, monitoring, vibration . .
P . . Detect trends, improve diagnosis Q . g Model choice, false positives,
autoregressive modeling, o scalable, enhances | analysis, automated and . .
. accuracy, enable automated monitoring, N . . info loss, operational
[21] feature reduction (PCA, o discrimination, wireless infrastructure -
L - enhance damage classification, and . variability, sensor/
discriminant projection), and . . condenses data, monitoring, and . . .
. reduce data dimensions . . environment integration
integrated sensor systems supports automation real-time damage
identification
Quantitative
Probabilistic and reliability- assessment Bridge, building, and
based analysis using General Carbonation-induced corrosion risk in supports long- port infrastructure High uncertainty in GCM
Circulation Models (GCMs) concrete may rise over 400% by 2100; term infrastructure durability forecasting; projections and variability in
[22] and climate projection tools chloride-induced corrosion risk may planning and design adaptation material/environmental data;

need for localized adaptation
frameworks.
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(23]

Two-phase framework:
(1) risk-based life cycle
assessment (LCA) for
steel and PSC girder
bridges; (2) integration of
environmental impact, cost,
and maintenance data under
climate scenarios (AR6).
Monte Carlo simulations for
reliability.

Climate change increased environmental
impact & cost by ~12.4%. Preventive
maintenance frequency and recycling

rate most influenced sustainability
outcomes.

Provides a

quantitative

model linking
deterioration, cost,
and environmental
impact. Promotes
sustainable bridge
design and adaptive

maintenance.

Applicable to highway
bridge design and
climate-resilient
infrastructure
management.

Requires detailed climate
projections; uncertainty in
corrosion modeling and data
generalization.

[24]

Requires detailed climate
projections; uncertainty in
corrosion modeling and data
generalization.

Identified major research clusters
(durability, sustainability, corrosion).
China and the USA lead global research.
Increasing integration of Al for predictive
maintenance.

Provides global
overview and data-
driven insight on
emerging trends
in climate-resilient
concrete research.

Useful for researchers
& policymakers in Al-
based monitoring,
RC durability, and
sustainable materials.

Limited participation from
developing regions; lack of
unified global framework;
data bias toward English
publications.

[25]

Machine learning algorithms
applied to bridge Structural
Health Monitoring (SHM),
trained on historical data (Z-
24 Bridge), and tested under
climate

Climate change significantly alters
temperature-dependent bridge
dynamics, reducing the accuracy of
machine learning-based damage
detection over time

Provides early
insight into SHM
vulnerabilities under
climate change;
helps design adaptive
learning algorithms
for infrastructure
monitoring

Long-term SHM system
optimization; adaptive
maintenance scheduling
for bridges and transport
structures under
changing environmental
conditions

Machine learning models
become outdated due
to climate shifts, lack of
temperature-robust training
datasets, and adaptive
algorithms
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(26]

Mixed-method approach
combining qualitative
case studies (Netherlands,
New York, Australia) and
quantitative risk modeling
(hydrological, thermal
stress, material failure) for
infrastructure resilience.

Conventional design codes are
inadequate under current climate
extremes; adaptive engineering using
UHPC, self-healing concrete, and
predictive models enhances structural
resilience.

Combines
environmental,
structural,
and economic
dimensions; provides
a comprehensive
framework for
climate-resilient
infrastructure.

Urban infrastructure,
coastal defense systems,
and transport networks;

engineering education

and climate policy
integration. Limited
global standardization of
climate-resilient design
codes; financial and
implementation barriers
in developing regions.

Limited global standardization
of climate-resilient design
codes; financial and
implementation barriers in
developing regions.

(27]

Systematic literature
review integrating Disaster
Risk Reduction (DRR) and
Climate Change Adaptation
(CCA) frameworks to assess
resilience of cultural heritage
sites, using policy and
scientific data sources.

Integration of DRR and CCA strengthens
resilience planning for cultural
heritage; identified lack of local-scale
implementation and weak policy—science
coordination as major gaps.
Climate change increased environmental
impact & cost by ~12.4%. Preventive
maintenance frequency and recycling
rate most influenced sustainability
outcomes.

Promotes holistic
resilience strategies
by linking heritage
preservation with
global climate
and disaster
risk frameworks
(Sendai, SDGs, Paris
Agreement).

Cultural heritage
management, disaster-
preparedness planning,
and international policy
design for resilience of
UNESCO heritage sites.

Lack of integration between
cultural policy, climate
science, and disaster risk
management; insufficient
funding and coordination for
heritage resilience.
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Conclusion and Future Scope

The study emphasises that Al has significantly revolutionised
SHM by transitioning it from traditional manual methods
to intelligent, automated, and predictive systems. Through
the integration of ML, deep learning, and loT-based sensing,
Al enhances fault detection, real-time assessment, and
damage prediction in infrastructures such as bridges,
buildings, and smart cities. Also, the integration of climate-
adaptive algorithms helps to meet the increasing challenge
of changing environments and global warming. However,
challenges such as limited data availability, sensor costs,
and cybersecurity challenges are being faced.

In the future of Al-based SHM, there will be a focus on
developing adaptive Al models that include explainable
Al, climate resilience, digital twins, and big data analytics
to support smart and sustainable infrastructure systems.
Interdisciplinary cooperation between civil engineers,
data scientists, and policymakers is critical to develop
autonomous, energy-efficient, and climate-resilient
monitoring frameworks for the future of infrastructure
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