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This paper explains how artificial intelligence (AI) is changing the way 
we check the safety and health of structures like bridges, buildings, 
and other constructions. Earlier, these AI-based inspections were done 
by people who took a lot of time, cost more money, and sometimes 
were not fully accurate. Now, AI-based systems use deep learning, the 
Internet of Things, and machine learning to find and predict damage 
automatically and in real time. AI technologies such as artificial neural 
networks (ANNs), convolutional neural networks (CNNs), and support 
vector machines (SVMs) are used to detect cracks, rusting, and other 
problems more accurately. These systems can also study environmental 
conditions like temperature and humidity, which affect the structure 
over time. Overall, AI has a structured structural health monitoring 
(SHM) promise system that only reacts after damage is seen, to one 
that can predict and prevent problems before they become serious. This 
helps in building safer, smarter, and more sustainable infrastructure 
for the future.

Keywords: Artificial Neural Network (ANN), Machine Learning 
(ML), Deep Learning (DL,) Internet of Things (IoT), Vibrational Analysis

Introduction
Structural Health Monitoring (SHM) has become very 
important in modern civil and mechanical engineering to 
keep structures safe, strong and long-lasting. As bridges, 
high-rise buildings, tunnels, and offshore platforms become 
more complex, traditional inspections that rely on manual 
checks are often slow, costly, and not very accurate. 
Now things are changing with the revolution of AI-based 
technologies such as machine learning (ML), deep learning, 
and the Internet of Things (IoT). These technologies allow 
data to be collected automatically for monitoring and 
analysis in real time. Problems are detected and predicted 

before becoming serious.  More efficiency and accuracy 
are achieved by AI-based SHM systems, and the need 
for constant human inspection is reduced.   Structural 
health is continuously being monitored under various 
conditions, including heavy rain and weather changes, to 
make infrastructure safer and smarter. Techniques such 
as Artificial Neural Networks (ANNs), Convolutional Neural 
Networks (CNNs), Recurrent Neural Networks (RNNs), and 
Support Vector Machines (SVMs) are now being used for 
the analysis of data from sensors, accelerometers, and 
images to identify cracks, corrosion, and other structural 
issues. More accurate detection is achieved through the 
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combination of different sensors, such as vibration sensors, 
acoustic devices, and optical tools. With the use of Edge AI 
and IoT systems, data is processed on-site more quickly, 
thus reducing the need for central computers. Inspection 
is made smarter and healthier by using technologies such 
as digital twins and drones. Due to the effects of climate 
change, monitoring is considered more important because 
materials can be weakened and structural behaviour can be 
altered by temperature, humidity, and extreme weather. 
Maintenance is now performed more efficiently, and 
structures are improved through AI systems. It has been 
shown by studies that bridges are the main focus of these 
AI systems (37%), followed by high-rise buildings (18.5%) 
and IoT-based infrastructure (11.1%). This demonstrates 
how safer and smarter cities are being created through 
the use of AI.

AI has changed SHM from a reactive approach to a proactive 
one. It allows early detection of faults, real-time analysis of 
data, and adaptive learning, all of which are important for 
building long-lasting and sustainable structures. However, 
there are still challenges, including limited data availability, 
the high cost of sensors, cybersecurity risks, and the 
complexity of integrating these systems. Overcoming these 
challenges requires teamwork between civil engineers, 
computer scientists, and material experts. SHM continues to 
develop, and AI will remain a key technology that connects 
automation, resilience, and sustainability for the next 
generation of smart infrastructure.

Literature Review on Climate Change Impacts 
and Structural Health Monitoring
Stewart, Wang, and Nguyen22 were among the first 
researchers to study how climate change could affect 
reinforced concrete (RC) structures using probability-based 
methods. Their study, published in Engineering Structures 
in 2011, used Global Climate Models (GCMs) to predict 
changes in CO₂ levels, temperature, and humidity over 
the next hundred years in Australian cities. They found 
that the risk of carbonation-related corrosion in concrete 
could rise by more than 400% by the year 2100. Chloride 
corrosion, especially near coastal areas, could increase 
by around 15%. These findings show that climate change 
may speed up the deterioration of bridges, ports, and tall 
buildings. The authors stressed the need for durability 
models that consider uncertainty in environmental and 
material factors. Their work laid the foundation for later 
studies connecting climate-related damage with life cycle 
cost and sustainability analysis.

Following this, Lee, An, and Kim23 expanded the research 
by focusing on the life cycle cost and environmental impact 
of bridges under different climate scenarios. Their 2025 
study in Scientific Reports used Monte Carlo simulations 
to measure how temperature and humidity changes affect 

maintenance needs, repair expenses, and carbon emissions. 
Their results showed that both cost and environmental 
impact could increase by up to 12.4%. They also highlighted 
the importance of preventive maintenance and recycling 
to improve sustainability.

AI and ML have been recognised as major advancements 
in SHM under changing climate conditions. Figueiredo et 
al.25 investigated how AI-based damage detection in bridges 
is influenced by rising temperatures as per a 2025 study. 
They used the Z-24 Bridge data set from Switzerland and 
tested AI models under future climate conditions based on 
RCP 2.6, RCP 4.5, and RCP 8.5 scenarios. They found that if 
AI models are trained only on old climate data, they may 
give wrong results or alarms in the future. This shows the 
need for AI models that can continuously learn and adapt 
to changing environmental conditions, similar to Stewart et 
al.’s call for adaptive reliability models. A global analysis by 
Colpari-Pozzo et al.24 reviewed over 6,000 research papers 
on climate-related deterioration of concrete structures. 
Published in 2025, the study shows grooming international 
collaborations on AI and predictive analytics for coll and 
durability monitoring. However, most research focused 
on developed countries like China and the United States, 
while developing regions were less represented.

Physical damage is observed to extend beyond the impact 
of climate change. They force an in-house structure on how 
it should be designed and governed. In 2025, Hellenic Open 
University, Martzaklis,26 observed that current design codes 
dependent on old climate data are not prepared for extreme 
events like heat waves, floods, or hurricanes. Combined 
case studies with risk analysis were conducted, and the 
use of materials like self-healing, Ultra-High-Performance 
Concrete (UHPC), and AI-based monitoring systems was 
suggested. It was argued that these technologies can extend 
the structure’s lifespan while minimising maintenance costs. 
In other research, Akturk and Hauser27 in Natural Hazards 
(2025) emphasised cultural heritage protection. Disaster 
Risk Reduction (DRR) and Climate Change Adaptation 
(CCA) practices were explored as being commonly done in 
isolation. It was discovered that even though frameworks 
such as the Paris Agreement and the Sendai Frameworks 
advocate for resilience, their executions at localities are 
weak. Strengthened cooperation, risk-based insurance, 
and combining policy responses were advised to safeguard 
heritage destinations from floods, heatwaves, and other 
climate-related vulnerabilities.

Overall, these studies illustrate the way research has 
developed – from corrosion risk forecasts22 to sustainability 
and life cycle cost analysis23 then AI-based monitoring25 
and finally policy and cultural protection.27 All the research 
points to the same general point: to safeguard infrastructure 
and heritage from climate change. Therefore, a requirement 
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of an adaptive, data-driven, and multidisciplinary approach 
integrating engineering, AI, and effective policy planning 
is required.

As shown in Fig. 1 above, the bar graph clearly indicates 
how AI is being implemented in SHM. Maximum usage of 
AI technologies is in bridge monitoring (37%), followed by 
high-rise buildings (18.5%), IoT-based smart infrastructure 
(11.1%), and a smaller share in health care applications 
(3.7%). The main objective of this chart is to demonstrate 
that AI is mostly being applied to upgrade infrastructure 
safety and support predictive maintenance. 

Fig. 2. The aforementioned figure predicts the percentage 
share of various application domains in the research study. 
Bridges account for a huge portion at 37.0%, followed by 
building high-rise buildings, each comprising 18.5%. IoT 
sectors represent 11.1%, while healthcare shows a smaller 
share at 3.7%. SHM research methodology is highlighted 
in different domains through the pictorial presentation 
of a pie chart.

Comparative Study on AI-Based Structural 
Health Monitoring and Climate-Resilient 
Infrastructure
Methodological Approaches

Two major methodological directions are evident in the 
reviewed studies: AI-based monitoring systems and climate-
adaptive design frameworks. AI-based SHM methodologies 
vary and are largely reliant, both for actively monitoring real-
time damage and recognising patterns within monitoring 
data, on ML, deep learning, and ANN. Most approaches are 
integrated with the IoT and other big data methodologies. 
For example, Shibu et al. (2023) utilised multimodal sensing 
technologies – fibre-optic and ultrasonic sensors – which 
have been shown to detect cracks with a high level of 
real-time reliability. Other examples of advanced deep 
learning architectures applied to SHM include CNN, RNN, 
and edge AI specifically designed for autonomous structural 
inspection. Conversely, researchers such as Stewart et al. 
(2011) and Lee et al. (2025) used probabilistic models, life-
cycle assessments (LCA), and Monte Carlo simulations to 
assess deterioration and climate-induced risk over longer 
timeframes. While the former study types focused on 
adapting during real time, the latter methodologies focused 
on future risk (multi-timeframe) and sustainability.

Experiments with AI-based SHM showed notable 
improvement in operational effectiveness and detection 
accuracy. Multi-stage ANNs showed 94% accuracy for 
composite T-joint degradation prediction, while ML 
methods like SVM and Random Forest attained up to 88–
92% precision in damage prediction. Real-time monitoring 
achieved using edge-AI applications reduced the inference 
time from three seconds to twenty milliseconds. Conversely, 
climate research indicated alarming patterns—carbonation-
induced corrosion can increase by over 400% by 2100 
(Stewart et al., 2011), and the cost of bridge maintenance 
could rise by 12.4% with climate change (Lee et al., 2025).10

Advantages and Applications

AI-based SHM gives automation, scalability, and huge 
precision, incorporating infrastructure such as buildings 
(18.5%), bridges (37%), and smart infrastructure (11.1%). 
Predictive maintenance, safety, and data collection are 
improved by combining IoT-enabled sensors with UAV-
based monitoring. On the contrary, climate-resilient 
design studies promote sustainable materials (such as 
self-healing concrete and UHPC) for long-term resilience. 
Future smart and climate-adaptive infrastructure systems 
can be approached holistically by integrating environmental 
modelling and AI-driven monitoring.

Challenges and Research Gaps

Both domains encounter operational and technical 
difficulties. High sensor cost, data heterogeneity, and 

Figure 1.AI-Based Structural Health Monitoring 
Application Domains

Figure 2.Application Distribution in Structural Health 
Monitoring
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interoperability problems are the limitations of AI-driven SHM, while model uncertainty, 
data generalisation, and lack of regional calibration are problems with climate-based 
investigations. Furthermore, even if AI models are very accurate, they frequently lack 

industry standardisation and explainability. A cohesive framework that integrates climate-
adaptive modelling with AI intelligence is necessary to create future infrastructure 
solutions that are autonomous and sustainable.

Reference No. Methodologies Results Advantages Applications Challenges

[1]

AI with IoT and big data 
for SHM in bridges; non-
destructive testing (NDT), 
vibration analysis, image-

based monitoring

AI enhances monitoring accuracy,
damage detection and predictive 

maintenance of bridges

High efficiency, 
early damage 

detection, improved 
safety, long-term 

sustainability

Bridge construction, 
management, 

and maintenance 
within Intelligent 

Transportation Systems

Human errors in traditional 
methods, the cost of sensors, 
integration issues, and limited 

accessibility in some bridge 
parts

[2]

AI/ML algorithms with 
multimodal sensors (eddy 

current testing, UPV, 
fiber optic sensing, image 

processing)

Crack width avg. 2.38 cm, length 
avg. 63.36 cm; model predicts crack 
propagation in multiple directions

Real-time monitoring, 
predictive 

maintenance, and 
climatic factor 

analysis

Buildings and bridges 
under varying climatic 

conditions

Economic cost of fiber optic 
sensors, dependency on high-
resolution imaging, and data 

analysis complexity

[3]
Systematic review of AI in 
SHM; ML (SVM, Random 

Forest), DL (CNN, RNN, RL)

AI enables real-time damage detection, 
anomaly classification, and predictive 

maintenance

Automation, 
scalability, and 

enhanced accuracy in 
anomaly detection

Bridges, high-rise 
buildings, offshore 

platforms

Data scarcity, model 
interpretability, computational 
complexity, scalability across 

structures

[4]

Deep learning-based 
SHM; CNN, RNN, GANs, 

Transformers, UAV 
integration, digital twins, 
physics-informed learning

DL achieves robust damage and defect 
detection; potential for automation of 

SHM

Non-destructive, 
scalable, integrates 
UAVs/digital twins, 
and accurate fault 

detection

Infrastructure 
monitoring, UAV-

assisted inspections, 
defect classification

Early-stage development, cost, 
reliability, and integration 

of DL models into field 
applications

[5]

Supervised machine learning 
techniques (SVM with linear, 

RBF, polynomial, sigmoid 
kernels; Naïve Bayes; Feed-
Forward Neural Network; 

Ensemble methods: Random 
Forest, AdaBoost

- SVM (Linear & Sigmoid): Highest 
precision (87–88%), fastest classification 

(~0.1 ms) 
- Random Forest (75 estimators): High 

precision (82–92%) but slower 
- Naïve Bayes: Moderate precision (78%) 

- FNN: Poor precision (58–74%) 
- AdaBoost: Worst (57%)

- SVM: High 
precision, low 

computation time 
- Random Forest: 

Reliable with large 
estimators 

- Ensemble learning 
provides diversity

- Structural Health 
Monitoring (SHM) in 
aircraft and metallic 

structures 
- Identifying the type 

and severity of damage 
via acoustic emission 

signals

- AdaBoost underperformed 
significantly 

- Random Forest required 
higher computation time 

- Limited dataset (60 samples) 
- PCA did not improve much 

- Classifier performance varied 
across scenarios

Table 1.Existing methodologies for Structural health monitoring using AI
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[6]

AI-based methods: ML, deep 
learning, feature extraction, 

system identification, 
diagnostics, big data analytics

Demonstrated superior performance in 
system identification, damage detection, 

and prediction of structural behavior

Handles large 
datasets, improves 
feature extraction, 

and enables real-time 
monitoring

Structural health 
monitoring (SHM), 

intelligent infrastructure, 
smart cities

Data heterogeneity, 
integration across domains, 

and scalability

[7]
Artificial Neural Networks 

(ANN), GNAISPIN model, FEA 
simulations, DRAT algorithm,

94.1% damage prediction accuracy 
for T-joint composites; up to 82% 

improvement with GNAISPIN

High accuracy, 
independent of 

load variations, and 
the capability for 
multiple damage 

detection

Composite T-joints in 
maritime structures, 

beams with 
delamination

Complexity of ANN training, 
sensor configuration 

dependency, need for 
extensive validation

[8]

Multi-stage ANN, statistical 
ANN, finite element 

modeling, guided wave 
propagation, spectral 

element modeling, clonal 
selection algorithm (CSA)

More reliable damage prediction; 
accurate detection of cracks, debonding, 

and shear slip

Reduces noise 
influence, improves 

reliability, and 
combines local & 
global detection

Damage identification 
in concrete-steel rebars, 

structural vibration 
analysis, and debonding 

detection

Measurement noise, modeling 
error, and limited sensitivity of 

global methods

[9]

AI + IoT-enabled sensors, 
predictive analytics, 

generative design, UAVs, 
robotics integration

Real-time monitoring of SHM, 
predictive maintenance, and optimized 

construction resource allocation

Efficiency, safety 
improvements, 

reduced downtime, 
smart adaptive 

buildings

AEC industry: smart 
buildings, infrastructure 
monitoring, predictive 

maintenance, 
automation

Cybersecurity, interoperability, 
cost of adoption, and 

workforce training 
requirements

[11]

AI & ML (neural networks, 
SVM, genetic algorithms, 
digital twins, predictive 

analytics)

Demonstrated applications in SHM, 
disaster management, predictive 

maintenance, and sustainable 
construction

Enhances efficiency, 
reduces material 

waste, and increases 
infrastructure 

longevity

Civil engineering: SHM, 
smart infrastructure, 

disaster response

Data quality, interoperability, 
high computational demands, 

and ethical concerns

[12]

Edge-AI, optimized CNN 
(quantization, pruning, 

weight clustering), Kneron 
KL520 chip testing

Real-time crack detection with 92.4% 
accuracy; inference time reduced from 

3s to 20ms

Low latency, reduced 
bandwidth, improved 

security, cost 
optimization

Real-time SHM (bridges), 
robotics, surveillance, 

automation

Limited device operator 
support, need for optimized 
models, and generalization 

issues
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[13]

Statistical ANN, sub-
structuring ANN, vibration 

+ guided wave analysis, 
spectral finite element 

modeling

Improved reliability of damage 
identification; efficient crack & 

debonding detection

Reduces 
computational cost, 
identifies both local 

& global damage

Bridge and infrastructure 
SHM, steel rebar crack 

detection, vibration 
monitoring

Sensitive to data quality, 
requires extensive training, 

and complexity of hybrid 
models

[14]

AI/ML (data-driven & model-
driven SHM), IoT integration, 

finite element analysis, 
pattern recognition, ANN 

models

Effective for monitoring, controlling, and 
evaluating bridge health; demonstrated 

ANN success

Enables automated 
pattern recognition, 

real-time assessment, 
and improves 

damage localization

Bridge SHM, decision-
making in maintenance, 

NDT/NDE inspections

Sensor installation & cost, 
data fusion issues, uncertainty 
in modeling, noise sensitivity

[15]

Wireless Smart Sensor 
Networks (WSSN), AI/

ML integration, acoustic 
emission, GPS monitoring, 
smart paints, piezoelectric 

smart aggregates

Reduced cost/time compared to wired 
systems; accurate crack/corrosion 

detection; real-time displacement and 
strain monitoring

Economical, scalable, 
flexible, autonomous 
functionality, suitable 

for large structures

Bridges, high-rise 
buildings, chimneys, 
offshore platforms, 

nuclear reactors

Power supply limitations, 
environmental sensitivity, 
hardware damage, lack of 

standards for field execution

[16]

Vibration-based and strain-
based SHM systems, load 
rating with finite element 

models, and reliability 
analysis for service life 

estimation

Effective in detecting damage, real-time 
structural capacity estimation is possible; 
reliability algorithms predict service life

Tracks structural 
changes over time, 
integrates codified 
frameworks, and 
enables real-time 

monitoring

Highway bridges, load 
capacity estimation, 
damage detection, 

service life prediction

Lack of validated SHM using 
ambient data; difficulty 
in long-term service life 

estimation

[17]

Wireless Sensor Networks 
(WSNs) for SHM, MEMS 
accelerometers, strain 

sensors, LVDTs, fiber optic 
sensors, distributed data 

processing, Tiny OS/Contiki 
OS

Efficient for vibration-based damage 
detection, real-time bridge monitoring, 

and scalable deployment across 
hundreds of nodes

Low-cost, scalable, 
reduced installation/

maintenance cost, 
easier deployment in 

remote locations

Bridges, railroads, 
buildings, seismic 

monitoring

Power efficiency, high 
data rate/throughput, 

time synchronization, fault 
tolerance, and limited 

computation in sensor nodes
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[18]

Case studies SHM: dams, 
bridges, platforms, buildings, 

tunnels; AI, MISTRAL, 
DAMSAFE

Real-time monitoring feasibility; anomaly 
detection; validated models (Humber 

Bridge, Singapore bridges)

Continuous, 
automated, real-
time safety data; 

maintenance 
decisions; resilience

Civil infrastructure: 
dams, bridges, offshore 
platforms, tall buildings, 
nuclear plants, tunnels

Lacking baselines, high sensor 
density, cost, environmental 

variability, and limited 
localization[1]

[19]

IoT smart health monitoring 
(AI, DL, sensor-based, 
smartphone-based, 

microcontroller)

Improved patient monitoring, reduced 
hospitalizations, real-time disease 

tracking, anomaly detection

Remote access, 
reduced costs, 

personalized care, 
smart city integration

Remote healthcare, 
chronic management, 

elderly care, 
telemedicine, smart 

cities

Security/privacy, device 
management, operator 

training, noisy data, energy 
requirements[1]

[20]

Statistical pattern 
recognition: operational 
evaluation, acquisition, 

feature extraction, modeling; 
NN, novelty detection

Lack of rigorous statistical validation; 
effective unsupervised novelty/outlier 

detection

Data-driven, reduces 
model dependence, 
scalable advances

Aerospace, 
infrastructure: bridges, 

buildings, composite 
plates, beams

Environmental/operational 
variability, big data, validation 

limits, statistical rigor1

[21]

Statistical process control, 
autoregressive modeling, 
feature reduction (PCA, 

discriminant projection), and 
integrated sensor systems

Detect trends, improve diagnosis 
accuracy, enable automated monitoring, 

enhance damage classification, and 
reduce data dimensions

Quantitative, 
scalable, enhances 

discrimination, 
condenses data, 

supports automation

Structural health 
monitoring, vibration 

analysis, automated and 
wireless infrastructure 

monitoring, and 
real-time damage 

identification

Model choice, false positives, 
info loss, operational 

variability, sensor/
environment integration

[22]

Probabilistic and reliability-
based analysis using General 
Circulation Models (GCMs) 

and climate projection tools 
like OZClim to predict CO2, 
temperature, and humidity 

effects on concrete corrosion.

Carbonation-induced corrosion risk in 
concrete may rise over 400% by 2100; 
chloride-induced corrosion risk may 
increase by ~15%. Results are most 

sensitive to CO2 concentration changes.

Quantitative 
assessment 

supports long-
term infrastructure 

planning and 
cost-effective 

adaptation strategies; 
incorporates 

uncertainty modeling

Bridge, building, and 
port infrastructure 

durability forecasting; 
design adaptation 

for urban and coastal 
regions under high CO2 

emission scenarios.

High uncertainty in GCM 
projections and variability in 

material/environmental data; 
need for localized adaptation 

frameworks.
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[23]

Two-phase framework: 
(1) risk-based life cycle 
assessment (LCA) for 
steel and PSC girder 

bridges; (2) integration of 
environmental impact, cost, 
and maintenance data under 

climate scenarios (AR6). 
Monte Carlo simulations for 

reliability.

Climate change increased environmental 
impact & cost by ~12.4%. Preventive 
maintenance frequency and recycling 

rate most influenced sustainability 
outcomes.

Provides a 
quantitative 

model linking 
deterioration, cost, 
and environmental 
impact. Promotes 
sustainable bridge 

design and adaptive 
maintenance.

Applicable to highway 
bridge design and 
climate-resilient 

infrastructure 
management.

Requires detailed climate 
projections; uncertainty in 

corrosion modeling and data 
generalization.

[24]

Requires detailed climate 
projections; uncertainty in 

corrosion modeling and data 
generalization.

Identified major research clusters 
(durability, sustainability, corrosion). 

China and the USA lead global research. 
Increasing integration of AI for predictive 

maintenance.

Provides global 
overview and data-

driven insight on 
emerging trends 

in climate-resilient 
concrete research.

Useful for researchers 
& policymakers in AI-

based monitoring, 
RC durability, and 

sustainable materials.

Limited participation from 
developing regions; lack of 
unified global framework; 
data bias toward English 

publications.

[25]

Machine learning algorithms 
applied to bridge Structural 
Health Monitoring (SHM), 

trained on historical data (Z-
24 Bridge), and tested under 

climate

Climate change significantly alters 
temperature-dependent bridge 

dynamics, reducing the accuracy of 
machine learning-based damage 

detection over time

Provides early 
insight into SHM 

vulnerabilities under 
climate change; 

helps design adaptive 
learning algorithms 

for infrastructure 
monitoring

Long-term SHM system 
optimization; adaptive 

maintenance scheduling 
for bridges and transport 

structures under 
changing environmental 

conditions

Machine learning models 
become outdated due 

to climate shifts, lack of 
temperature-robust training 

datasets, and adaptive 
algorithms
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[26]

Mixed-method approach 
combining qualitative 

case studies (Netherlands, 
New York, Australia) and 

quantitative risk modeling 
(hydrological, thermal 

stress, material failure) for 
infrastructure resilience.

Conventional design codes are 
inadequate under current climate 

extremes; adaptive engineering using 
UHPC, self-healing concrete, and 

predictive models enhances structural 
resilience.

Combines 
environmental, 

structural, 
and economic 

dimensions; provides 
a comprehensive 

framework for 
climate-resilient 
infrastructure.

Urban infrastructure, 
coastal defense systems, 
and transport networks; 
engineering education 

and climate policy 
integration.	 Limited 
global standardization of 
climate-resilient design 

codes; financial and 
implementation barriers 

in developing regions.

Limited global standardization 
of climate-resilient design 

codes; financial and 
implementation barriers in 

developing regions.

[27]

Systematic literature 
review integrating Disaster 
Risk Reduction (DRR) and 

Climate Change Adaptation 
(CCA) frameworks to assess 

resilience of cultural heritage 
sites, using policy and 
scientific data sources.

Integration of DRR and CCA strengthens 
resilience planning for cultural 

heritage; identified lack of local-scale 
implementation and weak policy–science 

coordination as major gaps.
Climate change increased environmental 

impact & cost by ~12.4%. Preventive 
maintenance frequency and recycling 

rate most influenced sustainability 
outcomes.

Promotes holistic 
resilience strategies 
by linking heritage 
preservation with 

global climate 
and disaster 

risk frameworks 
(Sendai, SDGs, Paris 

Agreement).

Cultural heritage 
management, disaster-
preparedness planning, 
and international policy 
design for resilience of 
UNESCO heritage sites.

Lack of integration between 
cultural policy, climate 

science, and disaster risk 
management; insufficient 

funding and coordination for 
heritage resilience.



249
Mahajan R et al.

Int. J. HealthCare Edu. & Med. Inform. 2026; 13(1&2)

ISSN: 2455-9199
DOI: https://doi.org/10.24321/2455.9199.202602 

Conclusion and Future Scope
The study emphasises that AI has significantly revolutionised 
SHM by transitioning it from traditional manual methods 
to intelligent, automated, and predictive systems. Through 
the integration of ML, deep learning, and IoT-based sensing, 
AI enhances fault detection, real-time assessment, and 
damage prediction in infrastructures such as bridges, 
buildings, and smart cities. Also, the integration of climate-
adaptive algorithms helps to meet the increasing challenge 
of changing environments and global warming. However, 
challenges such as limited data availability, sensor costs, 
and cybersecurity challenges are being faced.

In the future of AI-based SHM, there will be a focus on 
developing adaptive AI models that include explainable 
AI, climate resilience, digital twins, and big data analytics 
to support smart and sustainable infrastructure systems. 
Interdisciplinary cooperation between civil engineers, 
data scientists, and policymakers is critical to develop 
autonomous, energy-efficient, and climate-resilient 
monitoring frameworks for the future of infrastructure
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