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ABSTRACT

Lung cancer is the leading cause of cancer-related deaths worldwide,
and early detection significantly improves survival. Artificial intelligence
(Al), particularly deep learning and convolutional neural networks
(CNNs), has emerged as a powerful tool in thoracic imaging and
diagnostics. Recent research has demonstrated that Al is capable of
accurately detecting, categorising, and segmenting lung nodules on
chest radiographs, low-dose CT (LDCT), and histology, often matching
or outperforming radiologists in this regard. Al also makes it easier to
predict histological subtypes, characterise non-invasive tumours, and
integrate prognostic information with clinical data. However, problems
like limited dataset generalisability, high false-positive rates, and
restricted clinical application still persist. This study examines recent
findings demonstrating Al’s potential to transform lung cancer detection
while addressing the challenges to real-world implementation.

Keywords: Artificial Intelligence; Deep Learning; Machine Learning;
Abbreviations Computed Tomography (CT), Low-Dose Computed
Tomography (LDCT), Computer-Aided Diagnosis (CADx), Area-Under-
the-Curve (AUC), Convolutional Neural Networks (CNNs)

Introduction

detection (CADe) systems using rule-based algorithms and

Lung cancer accounts for approximately 18% of all cancer-
related deaths worldwide, highlighting the urgent need
for improved detection strategies.! Low-dose computed
tomography (LDCT) is the current gold standard for
screening high-risk populations, but its effectiveness is
limited by inter-observer variability, missed nodules,
and high false-positive rates. Artificial intelligence (Al),
particularly deep learning, has emerged as a promising
approach in thoracic imaging, enhancing diagnostic
accuracy and automating labour-intensive tasks. Early Al
efforts focused on computer-aided diagnosis (CADx) and

handcrafted features, which often showed limited clinical
integration and accuracy. The advent of convolutional neural
networks (CNNs) has significantly improved lung nodule
detection, segmentation, and classification by enabling
end-to-end learning from raw imaging data.? CNN-based
models outperform manual segmentation and accurately
distinguish benign from malignant nodules, achieving high
area-under-the-curve (AUC) values. Al applications have
expanded to histopathology and genomics, with multimodal
models integrating imaging and molecular data to predict
tumour subtypes and patient prognosis.?
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In the current healthcare landscape, where lung cancer
remains one of the leading causes of mortality and
healthcare systems are increasingly burdened, the relevance
of Al is further heightened. Its ability to accelerate diagnosis,
support clinical decision-making, and enable cost-effective
screening especially in resource-limited settings emphasises
its growing significance in modern medical practice.

Despite these advances, clinical adoption is limited
due to the “black-box” nature of deep learning, poor
generalisability, and insufficient prospective validation.
Overcoming these challenges is crucial to harness Al as
a reliable tool for early detection, precise diagnosis, and
personalised lung cancer management.

The Graphical representation illustrates how lung nodules
and cancer are examined using medical imaging techniques
such as a CT scan and chest X-ray. The three steps of
detection, segmentation, and classification are highlighted
as depicted in Figure 1. It also demonstrates how Al can
forecast the prognosis, mutations, and subtypes of cancer.
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Figure 1.Graphical representation of deep learning
applications for lung nodule and lung cancer in chest
imaging?!

Conventional Imaging and Diagnostic
Approaches in Lung Cancer

Chest X-ray

Chest €T

Traditional imaging techniques continue to be essential
for diagnosing and staging lung cancer. Chest radiography
(CXR) is frequently the first imaging method; however,
its sensitivity is restricted, particularly for small or early
lesions. Computed Tomography (CT), especially high-
resolution CT (HRCT), provides enhanced spatial resolution,
facilitating in-depth visualisation of pulmonary nodules,
mediastinal structures, and possible metastases. CT plays
a crucial role in evaluating tumour size, position, and
lymph node involvement, contributing to precise staging.

Additionally, low-dose CT (LDCT) screening has shown
effectiveness in early identification, resulting in enhanced
survival rates among high-risk groups.* Positron Emission
Tomography (PET), frequently paired with CT (PET/CT),
offers functional imaging by identifying metabolic activity.
Fluorodeoxyglucose (FDG) PET/CT is especially useful for
differentiating between malignant and benign lesions,
evaluating nodal involvement, and detecting distant
metastases. Research indicates that PET/CT may provide
greater sensitivity and specificity than CT by itself in specific
situations.’ Tissue biopsy continues to be the benchmark for
conclusive diagnosis, enabling histopathological assessment
and molecular analysis. Techniques consist of bronchoscopy,
transthoracic needle aspiration, and ultrasound-guided
biopsy via the endobronchial approach. These processes
are essential for identifying tumour histology and directing
targeted treatments.

Artificial Intelligence in Lung Cancer

Artificial Intelligence (Al) is revolutionising lung cancer care
by improving early detection, diagnosis, and treatment
strategies. Al algorithms, especially deep learning models,
have shown great precision in examining medical imaging
data, including low-dose computed tomography (LDCT),
chest X-rays, and positron emission tomography (PET)
scans. These models support radiologists in detecting
and defining pulmonary nodules, resulting in enhanced
screening results and earlier diagnoses.® In addition to
imaging, Al combines clinical and genomic information
to forecast treatment outcomes and patient prognosis.
Models of machine learning examine biomarkers and
genetic alterations, assisting in choosing personalised
therapies and predicting recurrence risks.”

Conventional vs. Al-Based Approaches in Lung
Cancer Detection

Radiologists rely on conventional imaging, which offers
moderate sensitivity, limited early detection, and minimal
predictive power. Al-based approaches enhance sensitivity,
staging, and early detection by integrating imaging with
clinical and molecular data Table 1. These approaches
predict prognosis and treatment response but face
challenges of data requirements, interpretability, ethics,
and regulatory approval.

Table 1.Comparison of Conventional vs. Al-Based Approaches in Lung Cancer Detection

Feature Conventional Imaging & Diagnostics Al-Based Approaches

Imaging Chest X-ray, CT, PET/CT, LDCT
Modality Chest X-ray, CT, HRCT, PET/CT with Al analysis®®
Detection Moderate sensitivity, especially for small High sensitivity and specificity; can detect
Accuracy nodules; depends on radiologist experience subtle nodules missed by human eyes®’
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Integration of

Clinical Data Primarily imaging and lab tests

Combines imaging, genomics, biomarkers, and
clinical parameters for prediction”®

Limited for small or early-stage

Early Detection
y tumors; often detected late

Enhanced early detection through deep
learning models and radiomics®*°

Staging Moderate; depends on imaging Improved staging and metastasis detection
Accuracy modality and radiologist expertise using Al-assisted imaging analysis®°
Predictive Minimal predictive power; mainly Predicts prognosis, treatment response,
Capability Descriptive recurrence risk, and patient outcomes®’
N Inter-observer variability; human Requires large labeled datasets; black-box
Limitations . oo : .1 75

fatigue; limited in subtle lesions nature; regulatory & ethical issues”

Clinical . Increasingly integrated; FDA-approved

. Widely used and standard of care gy Ines 610 PP
Adoption tools emerging®

Computational and Data-Driven Approaches
in Lung Cancer

Alongside traditional imaging, computational and data-
driven methods are becoming more and more importantin
the study, diagnosis, and treatment of lung cancer. These
methods use statistical models, deep learning (DL), and
machine learning (ML) to analyse huge, diverse datasets,
including genomic, imaging, transcriptomic, proteomic, and
clinical data. Al can spot tiny patterns that are frequently
missed by human observers by combining multi-modal
data, which allows for earlier diagnosis and more accurate
risk categorisation.!

Lung cancer frequently uses radiomics, a computer
technique that derives quantitative characteristics from
medical imaging. Radiomics makes tumour characterisation,
growth prediction, and therapy response evaluation easier
by transforming pictures into high-dimensional data. These
properties enable prognosis prediction and predictive
modelling when combined with machine learning methods
like support vector machines, random forests, and neural
networks.

Data-driven methods employ molecular and genomic
analysis in addition to imaging to direct customised
treatment. Al models use gene alterations in EGFR, KRAS,
and ALK to forecast recurrence risk, immunotherapy
effectiveness, and response to targeted treatments. In
order to maximise resource allocation, population-level
predictive modelling also aids in identifying high-risk
individuals for screening programmes. Predictive analytics
is further improved by combining real-world clinical data
with electronic health records (EHR). Clinical decision-
making is supported by models that have been trained on

sizeable datasets to detect prognostic markers, therapy
response patterns, and adverse event risks.?3

The requirement for sizable, varied, high-quality datasets,
model interpretability, and regulatory approvals are still
obstacles in spite of these advancements. Nevertheless,
there is a lot of potential for developing customised
therapy, enhancing early detection, and improving lung
cancer treatment through computational and data-driven
methods.

Al-Based Imaging Approaches and Clinical
Application & Validation

By facilitating automated tumour detection,
characterisation, and staging, artificial intelligence (Al)
has greatly improved lung cancer imaging. To detect lung
nodules with high sensitivity, deep learning models—in
particular, convolutional neural networks (CNNs)—analyse
CT, low-dose CT (LDCT), chest X-rays, and PET/CT images.? By
identifying minute morphological and textural patterns,
radiomics further converts imaging data into quantitative
variables that aid in tumour characterisations and risk
assessment.* By combining information from multiple
imaging modalities, multi-modal Al systems increase
diagnostic precision and lower false positive rates. Table 2.

Al is being used in lung cancer clinical settings for both
screening and diagnostic procedures. Al-assisted LDCT
screening has shown increased early detection rates and
decreased missed lesions in high-risk patients. Additionally,
Al models are being verified for therapy response prediction,
metastatic identification, and staging. The FDA’s approval
and other regulatory approvals have made it possible to
incorporate Al tools into standard clinical practice. Al can
match or surpass human performance in nodule detection
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and classification, while also cutting down on interpretation
time, according to validation studies comparing Al
performance with that of seasoned radiologists.” There
are still issues with data uniformity, model interpretability,
and clinical workflow integration Table 3.

Challenges and Limitations of Al in Lung Cancer

Despite impressive progress, there are still a number of
obstacles to overcome before Al can be used clinically to
treat lung cancer. To train effective models, one significant
drawback is the need for large, high-quality, and annotated
datasets, which are frequently hard to come by because of
privacy laws and variations in imaging procedures.’* Models
trained on certain demographics or imaging systems may
not perform well in other clinical situations, raising concerns
about algorithm generalisability. Furthermore, Al systems
frequently lack interpretability and are black boxes, which
undermine regulatory adoption and clinical trust. Upgrades
to the infrastructure and staff training are necessary for the

often difficult integration into current clinical workflows.
Missed diagnoses or needless treatments could result
from false positives and negatives, particularly in small
or early-stage nodules.” The adoption process is further
complicated by ethical and legal concerns, such as bias,
accountability, and data privacy. Resolving these issues is
essential to converting Al research into widely accepted,
secure, and useful therapeutic applications.

Future Directions of Al in Lung Cancer

Emerging Al approaches focus on explainability, multimodal
integration, and cloud platforms to improve trust, diagnosis,
personalisation, and accessibility, as in Table 4. Clinical and
research opportunities emphasise population screening,
personalised medicine, and continuous learning to
enhance early detection, optimise treatments, and ensure
adaptability, as in Table 5. Together, they aim to establish Al
as a reliable, equitable, and evolving tool in lung cancer care.

Table 2.Al-Based Imaging Approaches in Lung Cancer

Approach Imaging Modality

Key Function Advantages

Deep Learning (CNN) CT, LDCT, X-ray, PET/CT

Nodule detection &
classification

High accuracy; automated;
rapid analysis

Feature extraction; tumor

Quantitative, captures subtle

Radiomics CT, PET/CT L
characterization patterns
Multi-Modal Al CT + PET/CT + X-ray Integrative diagnosis Improves speC|ﬁ.C|-ty,' reduces
false positives
Table 3.Clinical Application & Validation
Application Clinical Utility Validation Outcomes
Screening High-risk population LDCT | Improved early detection; reduced missed lesions

Staging & Metastasis CT + PET/CT

Accurate staging; aids therapy planning

Treatment Response Prediction

Imaging + biomarkers

Predicts chemotherapy/immunotherapy efficacy

Table 4.Emerging Al Approaches

Future Approach

Purpose

Expected Benefit

Explainable Al (XAl)

Improve interpretability

Increase clinician trust; regulatory
acceptance®®

Multi-Modal Al

Integrate imaging, genomics, and biomarkers

Enhanced diagnosis, risk prediction,
and personalized therapy

Cloud-Based Al Platforms

Remote analysis and screening

Accessibility for low-resource
settings; real-time analysis!®*®

ISSN: 2455-9199
DOI: https://doi.org/10.24321/2455.9199.202601




Kaur P et al.
Int. J. HealthCare Edu. & Med. Inform. 2026; 13(1&2)

Table 5.Clinical and Research Opportunities

Area

Objective

Expected Outcome

Population Screening

Identify high-risk
individuals

Early detection; optimized resource
allocation

Personalized Medicine

Predict treatment
response

Tailored therapy selection; improved
outcomes®

Continuous Learning Systems

Update models with real-
world data

Improved performance; adaptability to new
populations

Abbreviations

Computed Tomography (CT), Low-Dose Computed
Tomography (LDCT), Computer-Aided Diagnosis (CADx),
Area-Under-the-Curve (AUC), Convolutional Neural,
Networks (CNNs)

Conclusion

The detection, diagnosis, and treatment of lung cancer
are being profoundly changed by artificial intelligence
(Al), which increases workflow efficiency, sensitivity, and
specificity. Al-driven models facilitate the integration
of multi-modal data, including imaging, genomics, and
clinical biomarkers, as well as the early detection of lung
nodules and precise tumour characterisation. A move
toward data-driven, individualised lung cancer care is
indicated by these important discoveries, which can
improve treatment results and shorten diagnostic wait
times. These developments have significant ramifications
since Al fosters precision medicine, aids physicians in
making decisions, and lowers human error in radiological
interpretation. Nonetheless, a number of obstacles still
exist, such as the requirement for superior annotated
datasets, worries about the interpretability of the models,
regulatory approval, and smooth integration into clinical
procedures. Future advancements, including multimodal
integration, cloud-based platforms, and explainable Al,
should improve the clinical applicability, dependability,
and transparency of Al systems. Clinical professionals, data
scientists, regulatory bodies, and healthcare organisations
must continue to work together to guarantee widespread
adoption. All things considered, Al has great potential to
transform the treatment of lung cancer by maximising the
use of available resources, increasing the effectiveness of
diagnostics, and improving patient outcomes in the rapidly
developing field of oncology.
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