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Glaucoma is an acquired chronic neuropathy characterised by damage 
to the optic nerve head and retinal nerve fibre layer. It is a leading 
cause of irreversible blindness worldwide. Our paper presents a 
systematic review of recent machine learning (ML) and deep learning 
(DL) approaches for glaucoma diagnosis from retinal fundus images. 
We survey available datasets, preprocessing methods, network 
architectures, and evaluation metrics. The review highlights automated 
methods for optic nerve segmentation and glaucoma classification, 
many achieving high accuracy. Results are synthesised to discuss the 
strengths and limitations of current AI methods and suggest directions 
for future research.
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Introduction
Glaucoma is an acquired chronic neuropathy character-
ised by damage to the optic nerve head and retinal nerve 
fibre layer. It is a leading cause of irreversible blindness 
worldwide. Early detection is crucial to prevent vision 
loss, but diagnosis is challenging due to asymptomatic 
early stages. The different stages that are encountered 
during the myriad developmental stages are depicted in 
Fig. 1 below. Computer-aided diagnosis (CAD) systems 
using retinal fundus images provide a non-invasive way 
to detect characteristic glaucomatous changes. In these 
images, glaucoma often manifests as optic disc cupping and 
nerve fibre layer thinning, which can be quantified (e.g., 
via the cup-to-disc ratio). Advances in AI enable automated 
quantification of such changes. Traditional methods relied 
on handcrafted features (textures, shapes) extracted from 
fundus images, while modern approaches use DL (e.g., 

CNNs) to learn features directly. This review organises 
the state of the art by ML vs. DL methods, summarises 
datasets and preprocessing, and highlights key results.1,2 

Thus, conventional CAD systems were based on machine 
learning (ML), including explicit image processing 
(segmentation of disc/cup and vessels), handcrafted feature 
extraction (texture, shape, and statistical descriptors), 
and then classifications using algorithms like support 
vector machines (SVM) or decision trees. In comparison, 
deep learning (DL) uses multi-layer neural networks 
(especially convolutional neural networks, CNNs) that take 
raw images and automatically learn hierarchical feature 
representations. Thus, DL can operate end-to-end without 
manual feature design. For instance, a recently done work 
noted that ML methods firstly segmented structures and 
then extracted features (edges, intensity gradients), 
whereas CNNs directly learnt vastly discriminative features 
from raw pixel intensities.

https://www.adrpublications.in/medical-journals/international-journal-of-healthcare-education-medical-informatics
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Review Methodology
We conducted a systematic literature survey using PRISMA 
guidelines.3 Searches used keywords like “glaucoma”, 
“fundus images”, “machine learning”, and “deep learning” 
across IEEE Xplore, PubMed, Springer, etc.4 We included 
peer-reviewed research articles (≈last 20 years, English) 
on ML/DL for glaucoma detection using fundus images. 
Excluded were reviews, non-English articles, and abstracts.5 
After screening titles/abstracts and full texts, 18 studies met 
the inclusion criteria. We categorised them into traditional 
ML and DL approaches and extracted information on data 
sources, image preprocessing, model architectures, and 
evaluation metrics.

Datasets and Pre-processing
Public retinal fundus datasets are key resources. Common 
glaucoma-related datasets include ACRIMA (705 images),6 
Drishti-GS1 (101 images),7 RIM-ONE (455 images), ORIGA, 
and DRIVE/STARE (with glaucoma labels). These vary widely 
in resolution and population. Larger general fundus data-
sets (e.g., MESSIDOR, Kaggle) are also used, sometimes 
relabelled for glaucoma. Data diversity (ethnicity, imaging 
devices) affects performance.

Preprocessing is crucial. Typical steps include image 
enhancement (contrast/illumination correction), vessel 
segmentation (to isolate retinal vasculature), and optic 
disc/cup segmentation (computing cup-to-disc ratio). For 

example, matched-filter or CNN methods extract vessel 
maps, and specialised networks delineate the optic 
disc and cup.8 Features (e.g., texture, shape) are then 
normalised (to reduce brightness/contrast variability) 
and fed to ML classifiers or directly passed to DL models. 
Data augmentation (rotations, flips, etc.) is also applied 
to increase sample diversity and improve generalisation.8 
Overall, good preprocessing (quality filtering, ROI extraction) 
enhances the models’ discriminative power.9

Machine Learning Approaches
Traditional ML systems extract handcrafted features from 
fundus images and train classifiers. Acharya et al.1 extracted 
texture and higher-order spectrum (HOS) features from 
the optic disc region and evaluated multiple classifiers 
(SVM, Naïve Bayes, and Random Forest). Their Random 
Forest achieved >91% accuracy. In another work, Acharya 
et al. used Gabor-filter features with PCA and SVM, reach-
ing ~96.9% accuracy.10 Acharya et al. also applied texton 
features and local configuration patterns with an LS-SVM, 
achieving 98.3% accuracy on a subset.11

Hybrid ML-DL methods have also been proposed. Civit-
Masot et al.12 built a dual-stage system: a CNN segmenter 
extracts optic disc/cup features, and an SVM classifies 
glaucoma. This achieved 91.5% accuracy (92.3% sensitivity, 
90.7% specificity). Claro et al.13 combined transfer-learning 
(pretrained CNN) features and texture descriptors, classified 
by SVM, and obtained ~98% accuracy on Drishti. Other 
studies used wavelet-based texture features with SVM and 
ensemble classifiers.14 For instance, Dua et al.14 used 2D 
wavelet energy features with feature selection, achieving 
~93% accuracy via SVM. In summary, ML-based approaches 
can yield high performance on moderate datasets but 
rely on manual feature design. They often require explicit 
segmentation (cup/disc) and may be less flexible than 
end-to-end DL. Table 1 below discusses a few such ML 
techniques.

Source: https://www.nishaniamerasinghe.co.uk/what-is-glaucoma

Paper ID Authors & 
Year

Dataset / 
Data Used Methodology Features Used Classifier Performance 

Metrics

[11]
Civit-

Masot et 
al. (2020)

Fundus 
images (disc & 
cup features)

Dual-stage 
system: CNN for 

segmentation + ML 
classifier

Disc and cup 
morphological 

features
SVM

Accuracy: 91.5%, 
Sensitivity: 92.3%, 
Specificity: 90.7%

[12] Claro et al. 
(2019) Drishti dataset

Hybrid model 
combining transfer 
learning + texture 

descriptors

CNN features 
+ texture 

descriptors
SVM Accuracy≈98%

Table 1.Machine Learning Approaches

Figure 1.Stages of Glaucoma
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Deep Learning Approaches
DL methods, especially convolutional neural networks 
(CNNs), automatically learn features from fundus images. 
Many recent works focus on optic disc/cup segmentation, 
since the cup-to-disc ratio is a crucial biomarker. Haider et 
al.15 proposed two CNN architectures (SLS-Net, SLSR-Net) 
incorporating separable convolutions and residual blocks 
to segment disc and cup efficiently. They reported superior 
segmentation accuracy across multiple datasets. Al-Bander 
et al.16,17 and al.15 used a fully convolutional Dense Net to 
segment the optic disc and cup; they achieved Dice scores 
~0.16,17 scores of 0.95 (disc) and ~0.81 (cup), scores of (cup), 
and an AUC of 0.98 for glaucoma detection. Mitra et al.18 
employed a CNN to localise the optic disc region of interest 
and reported AUC ≈ 0.98 on two public datasets.

DL has also been applied to longitudinal and multimodal 
data. Asaoka et al.2 trained a deep classifier on visual 
field perimetry maps (instead of fundus images) to detect 
pre-perimetric glaucoma, achieving AUC 0.93 (superior 
to standard methods). Chen et al.19 used a variational 
autoencoder to predict retinal nerve fibre layer (RNFL) 

thickness maps from colour fundus photos; their model 
yielded an AUC of 0.96 for glaucoma versus normal. Bisneto 
et al.20 applied a GAN to generate retinal image features 
and combined them with texture analysis, achieving AUC 
0.96 (95% sensitivity) for glaucoma detection. These 
examples show deep models handling related tasks and 
even generating synthetic data.

Large-scale CNN ensembles have also been explored. Several 
teams (e.g., Liu et al. (JAMA Ophthalmol 2019) and Hood 
et al.) have trained on hundreds of thousands of fundus 
images, achieving high sensitivity for glaucomatous optic 
neuropathy (often relying on active/transfer learning).16,19 
Transfer learning (using ImageNet-pretrained backbones) 
and aggressive data augmentation (rotations, colour shifts) 
are common to mitigate limited medical data. Some hybrid 
DL architectures (e.g., CNN+RNN) have been proposed to 
integrate sequential OCT or visual field data for progression 
modelling, though these lie beyond fundus-only models. In 
general, end-to-end DL systems often exceed ML baselines 
when data are sufficient, but they require careful training 
and interpretability tools (e.g., attention maps) to ensure 
clinical trust.

Table 2.Deep Learning Approaches

Paper Authors & 
Year Dataset / Data Used Methodology Features / Focus Performance Metrics

[15] Normando 
et al. (2020)

DARC (Detection of 
Apoptosing Retinal 

Cells) images

CNN-aided glaucoma 
progression 
prediction

Apoptosing 
retinal cell 
detection 
features

Effective glaucoma 
progression prediction 

(qualitative)

[16] Li et al. 
(2022)

Large dataset of 
retinal photographs

Deep learning system 
for prediction of 

glaucoma incidence & 
progression

Retinal 
photographs

Reported strong 
predictive ability (JCI 

2022)

[17] Haider et al. 
(2022)

Public glaucoma 
datasets

CNN architectures: 
SLS-Net & SLSR-
Net for disc/cup 

segmentation

Disc and cup 
segmentation

Superior segmentation 
accuracy across 

datasets

[13] Leite et al. 
(2021)

Corvis ST data 
(glaucoma & 

myopia)

Machine learning 
automatic 

assessment

Corvis ST 
biomechanical 

features

ML 
classifiers

Reported effective 
assessment 

[14] Dua et al. 
(2012)

Fundus 
images

Wavelet-based 
energy feature 

extraction + SVM

2D wavelet 
energy features SVM Accuracy≈93%
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Discussion
The reviewed ML and DL methods consistently report high 
diagnostic metrics (sensitivity, specificity, and accuracy 
are often >90%). Deep models generally achieve superior 
accuracy, especially when large, diverse datasets are 
available. CNNs can capture complex retinal features 
(subtle RNFL defects, vessel patterns) without manual 
segmentation. For example, segmentation CNNs have 
enabled more precise optic disc/cup delineation, directly 
improving glaucoma classification. However, DL models 
are data-hungry; most glaucoma datasets are relatively 
small, so overfitting is a concern. Cross-dataset validation 
often reveals performance drops. Robustness to image 
variations (different cameras, lighting) is an open issue.

Traditional ML approaches perform better than naive 
DL on very small datasets, due to simpler models and 
the use of expert features. They offer interpretability 
(specific features linked to glaucoma) but may miss complex 
patterns. Hybrid methods aim to capture the best of both 
worlds. In practice, choice of method depends on available 
data and application. Most studies use common metrics 
(sensitivity, specificity, AUC); while reported scores are 
impressive, care is needed because dataset biases and class 
imbalance can inflate performance. Few studies report 

confidence intervals or use prospective clinical validation.

Key challenges and future directions include: Larger, more 
diverse datasets: To improve generalisability, especially 
for multi-ethnic populations and different camera types. 
Multimodal integration: Combining fundus imaging with 
OCT or perimetry could enhance prediction and progression 
tracking. Longitudinal prediction: Few works have addressed 
time-series risk of glaucoma onset; this is a promising 
area (e.g., using RNNs on serial OCT). Explainability: 
Especially for DL models, providing saliency maps or feature 
attribution will be important for clinical adoption. Real-
world deployment: Mobile and telemedicine applications 
of these algorithms are beginning to be explored, which 
could enable large-scale screening in underserved regions.

Conclusion
This review summarised advances in automated glaucoma 
diagnosis using fundus images. Both ML and DL techniques 
have made significant strides. Feature-based ML models 
(SVMs, random forests with handcrafted features) and end-
to-end CNN models have each achieved high accuracy in 
glaucoma detection. CNNs, in particular, have demonstrated 
a strong ability to segment optic nerve structures and detect 
subtle disease patterns. Nonetheless, challenges remain: 

[18] Al-Bander et 
al. (2018) Fundus datasets

Fully convolutional 
DenseNet for 
segmentation

Optic disc and 
cup

Dice: ~0.95 (disc), ~0.81 
(cup); AUC: 0.98

[19] Mitra et al. 
(2018)

Two public glaucoma 
datasets

CNN for ROI 
localization

Optic disc 
localization AUC ≈ 0.98

[20] Asaoka et al. 
(2016)

Visual field perimetry 
maps Deep classifier Visual field maps AUC: 0.93

Table 3.Comparison of selected ML vs. DL glaucoma models: datasets and key metrics. 

Paper Model Type Dataset Used Accuracy (%) Sensitivity (%) Specificity (%) AUC

Civit-Masot et 
al. (2020) ML (CNN+SVM) Fundus disc/cup 

features (private) 91.5 92.3 90.7 –

Claro et al. 
(2019) ML (SVM) Drishti-GS1 (public) ~98 – – –

Dua et al. 
(2012) ML (SVM) Fundus images (small) ~93 – – –

Diaz-Pinto et 
al. (2019) DL (CNN) 5 public fundus DBs 

(1707 imgs) – 93.46 85.80 0.9605

Al-Bander et 
al. (2018) DL (DenseNet) Fundus sets (public) – – – 0.98

Mitra et al. 
(2018) DL (CNN) 2 public fundus sets – – – 0.98
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limited labelled data, the need for standardised datasets, 
and ensuring model generalisability. Future work should 
focus on building larger, diverse datasets, developing 
interpretable AI methods, and validating systems in clinical 
settings. With ongoing research, AI promises to improve 
early glaucoma screening and help prevent vision loss on 
a global scale.
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